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Figure 1: Floor plan of the Link Lab with labeled occupant spaces [3]

Abstract
This paper presents an integrated workflow for spatial energy vi-
sualization and nighttime anomaly detection within the Univer-
sity of Virginia’s Living Link Lab (LLL), a cyber-physical research
environment equipped with extensive sensor infrastructure. The
system aggregates minute-level electricity consumption data from
InfluxDB, processes them through Python and GeoPandas, and
then links them to a georeferenced CAD/QGIS floorplan of the
LLL to produce an intuitive room-level energy map. Traditional
methods require a building manager to manually analyze thou-
sands of data points collected from dozens of different sensors. This
spatial representation enables rapid identification of high- and low-
consumption zones and supports pattern recognition that is not
readily accessible through raw time-series data. By creating a visual,
color-coded, power-based map, occupants and facility managers
can have a better understanding of how their spaces utilize energy
and if there are sensor errors or rooms that are energy-intensive.
Building upon this spatial mapping, the project implements a multi-
model anomaly detection framework that combines rolling Z-score,
IQR outlier analysis, and K-means clustering to identify potentially
unnecessary nighttime loads at the room scale. The workflow is
∗All authors contributed equally to this research.

fully integrated into Microsoft Power BI, providing adaptable dash-
boards for comparative and near-real-time visualization. Together,
the system reduces analytical barriers for building managers and
occupants while facilitating targeted interventions to reduce waste-
ful energy use. Additionally, it establishes a scalable foundation
for the future expansion into multi-variable analysis and ML-based
automated building management.
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1 Introduction
The Link Lab is a University of Virginia (UVA) multidisciplinary,
cyber-physical systems research environment, opened in January
2018, that supports work ranging from robotics to smart and con-
nected health [1]. The Living Link Lab (LLL), a dedicated platform
within this space, operates as a long-term, sensor rich environment
for studying human-building interaction and the promotion of sus-
tainability [7]. More than 100 occupants use the 17,000-square-foot
facility, which contains sensors monitoring power, temperature,
humidity, air quality, noise, and more. A diagram of the Link Lab is
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shown above in Figure 1. The LLL’s sensing infrastructure allows
for the monitoring of occupants’ states, along with human behavior.
It can be used for energy optimization and sustainability studies
or to gain insights into occupant health, comfort, and productivity.
Although this extensive infrastructure produces large volumes of
time-series data, meaningful interpretation is often difficult. The
patterns of energy use that matter most to building managers or
sustainability researchers are typically buried beneath thousands
of raw readings. This paper addresses this challenge by developing
a workflow that converts raw sensor data into an accessible spatial
map of energy use and establishes an anomaly detection frame-
work capable of identifying nighttime irregularities. To achieve this,
all of the data is gathered and stored in InfluxDB, an open-source
database platform specializing in the storage and retrieval of time
series data [6]. This work advances the LLL’s goal of building a
robust, user-friendly foundation for ongoing research into smart,
energy-efficient environments.

2 Problem Statement
Despite the availability of detailed energy data, there remains a gap
between the volume of information gathered and the ability of non-
technical users to derive actionable insights. Building managers
and occupants often encounter sensor outputs in complex time-
series formats, where meaningful relationships are not immediately
intuitive. The examples of weekly power usage show how easily
important trends become obscured by raw numerical data. Figure 2
demonstrates this point. This project will focus on power data, a
direct indicator of the electricity use in different spaces, which, as
shown, can prove difficult to analyze in its complex, raw format.

A second challenge involves unnecessary nighttime power use.
This can include such loads as lights or equipment left on, equip-
ment restarting, or phantom detections from sensors and sensor
based systems. These energy expenditures provide no utility during
unoccupied hours yet contribute to carbon intensity and opera-
tional cost. As universities nationwide face rising utility expenses
and budget constraints, reducing such waste becomes increasingly
important.

To address these challenges, this project focuses on two key
tasks. First, developing an intuitive spatial visualization of room-
level energy use and, second, establishing a nighttime anomaly
detection method that can guide corrective action.

3 Motivation
Understanding how energy is consumed within indoor environ-
ments is essential for promoting sustainability and optimizing build-
ing function and operation while also enhancing occupant comfort.
However, many building occupants lack accessible and meaningful
energy data and visualizations that connect their local decisions to
broader energy patterns, while managers must sift through dense
data sets to identify issues. While there is some existing research
involving broader energy planning and efficiency using Geographic
Information Systems (GIS) [4] and complex systems utilizing sen-
sors, Internet of Things, and AI within building management [2],
this project is quite novel.

The core motivation of this project is to improve energy literacy
and operational efficiency by connecting spatial visualization with

Figure 2: Sensor by room number since 12/30/2021 (204 total
weeks) showing the sum of total kWh for each room on a
weekly basis. Demonstrates the volume of data the sensors
collect, how it can be difficult to understand in its raw format,
and why only one week of data was mapped.

anomaly detection. By placing energy data in a spatial context and
emphasizing nighttime irregularities, the system enables users to
identify wasteful patterns quickly. The work contributes not only to
cost savings and emissions reduction for the School of Engineering
andApplied Science (SEAS) but also to the Living Link Lab’s broader
mission of supporting human-centered and sustainable building
research. Building energy represents a major operational expense
and emissions source. Both occupants/users and owners/managers
should have a shared sense of responsibility in reducing excess
energy usage, even if to achieve different end goals. Yet, many func-
tions of a building that rely on energy are needed for the health
and comfort of its occupants, and some energy usage is determined
by the building itself (e.g. Insulation efficiency). This project will
address two main goals that improve energy monitoring and usage:

(1) Providing a more intuitive way to understand energy use:
A floor-plan based visualization tool will help bridge the
gap between raw sensor output and intuitive human un-
derstanding. A spatial map allows occupants and managers
to better understand where power usage spatially occurs
throughout a building, and helps identify historical patterns
and trends in power, along with enabling data comparison.

(2) Identifying areas of action: The nighttime anomaly detec-
tion tool utilizes energy mapping in a way that provides
financial and environmental incentives for spatial visual-
ization. If unnecessary power usage can be identified and
addressed, the University can save money on utilities that
would have otherwise gone to waste. The development of
a visualization tool that allows for the correction of en-
ergy waste furthers the LLL’s goal of being a testbed for
cyber-physical systems research with a particular focus
on fostering human-building interaction and contributing
towards sustainable development.
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4 Methodology
The integrated system that links spatial visualization, comparison,
and automated anomaly detection is composed of a few distinct
parts: Data Aggregation and Spatial Mapping, Comparative Visu-
alization, Nighttime Anomaly Detection, and Error Injection. The
sections below will detail the processes and steps taken to make
each of these parts of the system functional.

4.1 Data Aggregation and Spatial Mapping
The InfluxDB for the LLL was connected to VS Code (Python) using
a secure connection. Only sensors that collected wattage power data
in the Link Lab were selected for analysis. A list of relevant room
numbers was compiled so that a 2D floor map could be produced
accurately and appropriately labeled. Only sensors in rooms within
the LLL were utilized as these sensors were able to be tested, and
their exact location was known.

When collecting data, it was decided to aggregate sensor data
by location (room number) and not by device ID. An initial sum of
data by room number produced a result with a 400% faster runtime
and produced results equal to those obtained when sensor data was
summed based on device ID. Data was aggregated over 1 week,
and each sensor utilized collected data once a minute, meaning
that each sensor produced 10,080 individual lines of data. It was
decided to utilize a one-week block of time, as how both an academic
and office building are used, which tends to vary day to day but
is consistent on a week-to-week basis. A weekly total accurately
accounts for weekends when it is expected that power usage is at
its lowest. The use of one week as the study block allowed for all
sensor readings to be used without bogging down and prolonging
the analysis period. Further, if the spatial map is to be used as a
predictive tool, the events of the past week are more predictive of
future behavior than what occurred years ago. It was chosen to
take a room-by-room total, as how a room is used is more intuitive
compared to an individual outlet. Most building occupants and
building managers know how a space is generally used or who is
occupying the space, but they do not necessarily know how each
outlet is being utilized. Further, how an outlet is utilized is fluid; an
individual may not always plug their device into the same set of
outlets, but how a space is used tends to be less fluid.

Based on the parameters chosen above, the total energy usage of
the room was found per week. A CSV (Comma Separated Value) file
was created to organize the data and allow for future integration
into a 2D floor plan of the space. This was chosen because its
universality would allow for seamless integration between the data
set and the floor plan and they can be constantly written over,
eliminating the need to rewrite code whenever an updated analysis
is desired. Next, Computer-Aided Design (CAD) software was used
to make a diagram of the floor plan that could be exported to a .dxf
file. This was done by importing an image of the Link Lab floor
plan [3], and drafting the perimeter of the lab and rooms that were
equipped to track power use (W).

While the drawing file was a crucial step to create a format
that Python would be able to understand and map, the floor plan
had to be converted to a GeoPackage (.gpkg) file. The spatial map
is ultimately created using a geospatial library called GeoPandas,
which is not built to read drawing file formats. Instead, the file must

Figure 3: Bar Graph of energy usage in kWh by sensor loca-
tion (room number) for the week of 9/18/2025

be changed into a more structured format that can define the spatial
relationships between different objects, or in this case, rooms. To
convert the .dxf into a .gpkg file, a free and open-source application
called Quantum GIS (QGIS) that specializes in spatial visualization
was used [8]. Using QGIS, the drawing file can be imported, and
the lines that were used to define the various rooms of the lab in
CAD can be labeled as different polygons with a corresponding
Room ID. It is critical to note that the name assigned to each closed
polygon in QGIS must match the variable name used to identify
the rooms in the CSV file. If these names do not match up, the code
will not be able to correlate the energy value from the CSV file to
the correct spatial location on the visual map.

Once an accurate floor plan was created and could be read by
GeoPandas, it was able to be referenced alongside the CSV file.
The CSV was utilized to create a bar graph of kWh for the week
of 9/18/2025 so that the resultant map could be crossed checked
to ensure accuracy (Figure 3). The spatial map and CSV file could
be cross-referenced based on the shared parameter, room number,
and the final spatial map was created using the GeoPandas Python
package. An overview of the overall framework for this approach,
along with the main design features that make it work, is shown
in Figure 4. These steps are what allow the raw sensor data to be
easily visualized throughout the Link Lab.

4.2 Comparative Visualization
A Microsoft Power BI model of the data was created and published.
This methodology was chosen as it allows for a third-party user to
have easy access to the data in a purely visual format, its use is very
intuitive, and a user can customize what time period of data and
which room they want to analyze. Power BI can be easily updated
by the developer, allowing for the time period of analysis to be easily
altered. Further, it allows a user to select which rooms they want to
visualize. This allows occupants of various spaces to compare the
energy use of their office relative to those occupying spaces that are
of similar size and function. The model was developed to visually
analyze sensor data for a period of 104 weeks (2 years). This block
of time was chosen since any larger period proved to have produced
too much data for Power BI to analyze in a reasonable amount of
time. Power data was summed over one day so that accurate slicing
of the data could be integrated into Power BI. The dashboard allows
the user to select the time period they want the visual analysis to
be conducted on (Link Lab Power BI Dashboard).

https://app.powerbi.com/links/UTe5Lc-Pjw?ctid=7b3480c7-3707-4873-8b77-e216733a65ac&pbi_source=linkShare&bookmarkGuid=f9cf25ce-05d1-4f1c-8256-c42b2e53f61e
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Figure 4: This flow chart summarizes the steps involved in
visualizing the raw sensor data spatially. Part a.) depicts the
development of a .dxf CAD file for the floorplan, part b.)
shows the drawing imported into QGIS where each of the
rooms is assigned a feature ID number (FID) that corresponds
to a room ID, part c.) shows the use of an Excel pivot chart to
gather specific weeks of data for further analysis, and part
d.) shows the corresponding CSV data from the Excel (with
columns labeled accordingly) being cross-referenced against
the .gpkg file to create the final spatial diagram.

Figure 5: Power BI dashboard analyzing the daily average
kWh usage from 12/3/2023 to 11/30/2025. The model auto-
matically color codes the data bars and the map based on
average energy usage. A stacked bar chart and floor plan
show average daily kWh usage for the selected period, while
the line chart shows the daily usage for the selected period.

The model was created by selecting Python as a data source and
copying and pasting in the code developed above, adjusting the
summing interval and the time period analyzed as described above.
To integrate the floor plan model into the dashboard, so that it can
easily be updated by the user, the map developed above was then
converted into a TopoJSON file. Power BI is then able to convert
this file into a shape map, which allows the map’s room coordinates
to be linked to the data sets’ room labels, and subsequently color-
coded to be assigned based on average power usage. This then
allowed the data on power usage to be applied to the floor map,
enabling users to easily see how power usage varies from room to
room in the Lab (Figure 5) .

The stacked column chart and the line chart were also helpful,
as they allow a user to better understand how the power use of a
selected room and the Living Link Lab as a whole have changed
over time. Moreover, they help provide a connection between the
floor plan and the exact energy usage.

4.3 Nighttime Anomaly Detection
This project focuses on a room-level anomaly detection of Olsson
Hall’s Living Link Lab, which is equipped with circuit power sen-
sors that pick up loads from all of the electric outlets and lighting.
The detection model is a proof-of-concept, and many steps remain
between this paper and functional deployment; these steps will be
discussed in the Future Work section and throughout this section.
The model itself is broken up into two main algorithms, a detection
pipeline and an error injection testing pipeline. The accompanying
code can be found in the linked GitHub Repository [5]. Given the
time-constrained nature of this project, the two algorithms largely
act independently. The next major step for model advancement
would be linking the algorithms and using ML to tune various
parameters.

A core concern of this model approach is accuracy. By nature,
collecting “true” data is extremely intensive. To know if a light
or computer is on in the middle of the night for a whole building
floor would require a human present to monitor the building’s state
throughout the night. Not only is this impractical, but having an
occupant present may skew data from normal usage, especially
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for sensor-based systems. Recordings could also be taken, but this
is once again a labor and storage-intensive process. Because of
this, it was decided that the model be manually tested by inserting
artificial power anomalies to determine whether the model can
detect them or not. This method is not as effective as “true” training
data, nor does it assess the validity of the data itself, but it can at
least improve model performance, assuming the injected errors
model the anomalies that are desirable to detect. In other words, if
the anomalies can be simulated, they can be detected.

A key tenet, along with accuracy, is false positives versus false
negatives. False negatives fail to reduce excess energy usage, whereas
false positives likely increase the amount of human intervention
that may take place in the evening or during the night, for ex-
ample, by a building manager or security staff. Because of this,
our detection algorithm uses three different models and only flags
an anomaly if two out of three agree. The steps for the detection
pipeline are listed below explained in further detail:

4.3.1 Step 1: Querying Power Data. Power data is summed over
the selected time frame (default = 15 min) by room and converted
to kilowatt-hours. The data is then stored in a pandas data frame.

4.3.2 Step 2: Helper Functions. Three helper functions are then
defined, which convert the data into more usable formats for anal-
ysis. For example, they may filter the data frame to just a single
selected room, add time features for data categorization and time
zones, or create a new date column where AM hours of the night
are classified as the previous day for analysis.

4.3.3 Step 3: Run Models. Three models are used, all based on
different statistical principles. As mentioned above, the goal is to
reduce the number of false positives and increase model robustness
given the lack of training data associated with the “truth state” of
the building.

(1) Rolling Z score: The first model is a rolling Z-score model.
The model takes in only the past two weeks’ worth of data,
which is assumed to be representative of normal building
use. The average and standard deviation are calculated for
that time frame, and any values that are above two standard
deviations above the mean are flagged as anomalies. The
function then returns a data frame with a sigma column for
each observation as well as a boolean column that returns
if the observation is flagged as an anomaly.

(2) IQROutliers: Similar to the previousmodel, the inter-quartile
range (IQR) is computed for night-time hours. Any values
that are above the IQR are flagged as anomalies. Unfortu-
nately, this is one model where the current deployment
does not match our intended goal. The model is intended
to subset the data and create different IQR for different
time categories, such as weekdays versus weekends and
semesters versus breaks, but time limitations prevented us
from developing it thoroughly. This will be expanded upon
further below.

(3) K-Means Clustering: This machine learning algorithm clas-
sifies all observations into one of two clusters, intended
to represent points that are “normal” and those that are
considered “outliers”, or anomalies. Five features are in-
cluded in the model: mean, standard deviation, max value

per night, percent above 5 W (arbitrary baseline), and num-
ber of power step-changes. If the model believes all the
points are similar and clusters them together, it is possible
for it to only return one cluster. This does not represent a
problem with the model, but rather that no anomalies were
detected.

4.3.4 Step 4: Combining Model Outputs. The outputs from the
previous models are all combined in this function. Every model
produces a data frame with a Boolean column representing whether
a time step is predicted as an anomaly. This function takes those
outputs and produces an additional column with a boolean value,
set to trigger by default as true if two of three models agree that a
time step is an anomaly. The function can also output if any one
model flags a time step or if all three agree.

4.3.5 Step 5: User Evaluation. Three metrics were chosen as final
indicators for anomaly detection. The first is the anomaly rate
per night. The total number of nighttime data points, as well as
the number of anomalies, are counted for a given room. Then, a
simple ratio is calculated to determine the number of anomaly
points. A high number of points likely indicates something being
left on that is not seen in the training data, or that a room was
genuinely occupied overnight. The second metric is the persistence
of anomalies. Data are gathered every 15 minutes; any sequential
anomalies are grouped as one event. The frequency of these event
lengths is outputted for examination. The last metric is the Jaccard
Matrix. The Jaccard Index is a statistic that represents the similarity
of data by dividing the area of intersection between two datasets by
their total area of union. Since there are three models, a matrix is
computed, representing how similar the models flagged anomalies.

4.3.6 Step 6: Plot Anomalies. This function graphs the energy usage
of a selected room overnight. Any anomalies flagged by the three
models, plus the combined output, are overlaid on the graph to
provide the user with numerical and graphical insight as to what
the anomaly event may have been and when it occurred.

4.3.7 Step 7: Entire Floor. Metrics are recomputed for the entire
floor, as opposed to just one room. For example, another persistence
histogram is created, this time combining anomalies across the
entire floor for a single night. An overall anomaly ratio is also
calculated. Together, these two metrics could also calculate the
amount of potential energy savings available for a given night. The
last output is the same anomaly plot over an energy usage graph,
but now includes all rooms that have at least one anomaly.

4.3.8 Visualizations and Results. An example of the pipeline’s re-
sults is included in Figure 6. The overall computed metrics are
included in the output along with the two graphs shown. In addi-
tion, the number of anomalies per night per room are saved in an
external file so the data can be mapped spatially in PowerBI. The
spatial mapping is powerful for gaining quick insight into which
rooms may have excess energy usage and provides the most direct
utility to end users who may have limited technical knowledge and
time.

Power BI mapping also shows how the room’s current and his-
toric power usage could be directly linked to the average number of
anomalies seen over the indicated period. The CSV file that resulted
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(a) Energy anomaly outputs.

(b) Histogram anomaly outputs.

Figure 6: Two graphical outputs of the anomaly pipeline
algorithms, also shown spatially in PowerBI.

Figure 7: Mapping of Anomaly Outputs

from the above calculations was imported into Power BI to allow
for plotting based on the indicated room number (Figure 7).

A nighttime anomaly detection dashboard was developed in
Power BI, allowing users to quickly identify potential anomalies
before utilizing the above code to better understand if anomalies are
common in that room. The Power BI model looks at the past seven
days of data and sums over 5-minute intervals. A seven-day interval
was chosen so that a user will always be able to compare their cur-
rent time usage to nighttime usage on another weekend/weeknight.
5-minute intervals allow a user to get close to real-time data with-
out bogging down the system, leading to slow analysis. However,
it should be noted that the current power dashboard requires the
user to download the model and manually reload it so that the data
can be updated.

4.4 Synthetic Error Injection
Since the data is unlabeled, it is difficult to directly measure the
efficacy of the models in detecting anomalies. The goal of the syn-
thetic error injection pipeline is to manually insert random power
values to see if the model can detect if they are anomalies. When
combined with the detection pipeline, models and global parame-
ters can be automatically adjusted through ML to get the highest
performing predictions. Examples of adjustable parameters include:
necessary deviation from the mean to be considered an anomaly,
types of features to include in clustering, and the number of days
to consider for model training. The pipeline is described in greater
detail below:

4.4.1 Step 1: Anomaly Injection. The data is injectedwith N number
of anomalies, lasting a random amount of time between minimum
and maximum bounds, and representing a random positive delta
power between bounds. The data is saved to a new data frame. This
process will be expanded upon in the Future Work section. It is
important that these injections represent the anomalies we seek to
detect, which is no simple task.

4.4.2 Step 2: Detection Functions. The data frame is passed through
the same three detection models with the same parameters. The
outputs are also combined by majority vote into a fourth additional
boolean column. The rate of anomaly detection determines model
performance, and model parameters can be changed accordingly to
maximize detection while minimizing false positives.

4.4.3 Step 3: Pipeline Outputs. The mean is taken of each model’s
output, including the combined output. Since the output is one
boolean column representing the existence of anomalies and only
values with injections are preserved by this step, every row should
be flagged as true for all models. In other words, the ideal mean
value is 1, whereas the worst possible value is 0.

5 Results
The results from the integrated system are divided into several
sections that detail the validity of the initial spatial visualization,
Power BI work, and anomaly detection.

5.1 Spatial Visualization
The spatial mapping workflow successfully produced a 2-D repre-
sentation of energy consumption within the Living Link Lab, as
shown in Figure 8. A week in the middle of September 2025 (week
195) was used, and power data was mapped onto the floor plan,
with a continuous color scale ranging from green (low consump-
tion) to red (high consumption). This gradient enables rapid visual
identification of energy-intensive and energy-efficient spaces. The
spatial map used the total value of 10,080 different readings.

Across the analyzed period, the map revealed discernible spa-
tial trends in energy usage. Collaborative and shared work zones,
specifically Rooms 201, 203, and 210 exhibited higher weekly en-
ergy consumption relative to individual offices, likely reflecting
greater equipment density and occupancy levels. Conversely, the
peripheral, personal office spaces displayed lower and more sta-
ble consumption patterns. There was some slight differentiation
between individual offices, indicating that most occupants utilize
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Figure 8: Link Lab Spatial Map: Total Energy Usage (kWh)
aggregated by room number for the week of 9/18/2025

Figure 9: Power BI Visualization of 11/23/2025 to 11/30/2025
for a select group of rooms with a smaller spatial footprint.
Rooms were chosen purely based on their relative size.

their space similarly and for approximately an equivalent amount
of time during the week.

These preliminary results validate the functionality of the data
aggregation and visualization process, demonstrating that the work-
flow can translate large quantities of raw sensor data into inter-
pretable spatial insights. The resulting map provides a foundation
for subsequent analyses, including anomaly detection, energy opti-
mization, and comparative evaluation across time periods. While
currently retroactive, by gathering more information on building
use patterns, we plan to create a more predictive model.

5.1.1 Utilizing Power BI. The Power BI model allows for any single
day of Living Link Lab energy usage to be easily visualized. This
allows a user to easily see potentially energy latent spaces that
could undergo retrofitting. Such a use includes looking at the small
rooms in the Lab that have somewhat similar functions. By only
selecting these rooms and setting the time period to one week
(11/23/2025 - 11/30/2025), it is easier to visualize rooms that have a
similar function and square footage (Figure 9).

The preliminary results displayed above illustrate how the 2D
floor plan can be transformed into a user-friendly interface that

allows users to focus on the time frame and space types that con-
cern them. It illustrates how thousands of pieces of data can be
aggregated to be analyzed and understood at a glance, optimizing
usability but not sacrificing the quality of data.

5.2 Anomaly Detection
The anomaly detection pipeline was successfully run on the last two
weeks of November 2025. The results are included in Power BI for
adaptable visualization. When examining the graphical output of
anomaly detection across various days, two main anomalies surface.
The first is large power spikes that often last a short time, which
the models flag. The second is very low power values, generally
close to zero, that stay flagged for over two hours. Both cases could
represent excess power usage at night, and examination of these
events in real-time could lead to power and, thus, cost savings.

Communal rooms and large spaces were more likely to have
flagged anomalies when compared to individual office spaces. Most
nights have overall anomaly ratios under 0.15, showing that are
models are not outputting many, if any, false positives. Examination
of Jaccard matrices for most rooms and nights show general agree-
ment in flagged anomalies across models. As previously mentioned,
without labeled data, it is impossible to know if these anomalies
represent truly superfluous energy use. Furthermore, the model
cannot predict whether the energy use can actually be decreased,
but it does provide robust detection given the minimal human labor
required. In practice, either a person, such as a building manager,
or a camera would have to be present to be able to ultimately make
conclusions on the model’s efficacy and reduce energy usage.

The models handled the uniform random positive delta error
injections well. With 50 injections across all 2025 data, all model
means were above 0.95, meaning they missed at most 2 of 50 in-
jected errors. The highest performing model was the IQR Outliers,
which detected every injection. The combined majority output
detected every injection but one. When the two pipelines are con-
nected for training, the number of injections should likely increase
significantly to match the size of the dataset; however, just the 50
injections took about 15 minutes of runtime, so model performance
is an area of improvement as the data scales.

5.2.1 Power BI. The Power BI anomaly detection integrates real-
time power detection, anomaly detection, and 2D floor plan map-
ping to optimize usability. By allowing for the retroactive daily
summary, 5-minute nightly summary, and anomaly averages over
a set time period, a user can gain a complex understanding of what
"typical" power usage is, how often variance from this baseline
is seen, and what current nighttime usage is. When combined, a
user can quickly see if their room is seeing an unnecessary peak
in power usage due to a device being left on accidentally when it
is not in use, allowing them to take adequate action both in the
moment and going forward. Olsson 241 was analyzed for both the
average power usage between 11/24 and 11/30 as well as the av-
erage anomaly ratio during this period. It can then be understood
that while there are multiple peaks in power usage in this room,
they occur at night when the room is unoccupied. The anomaly
detection dashboard further proves that these peaks in power usage
are anomalies and should be investigated to decrease overall power
usage (Figure 10).
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Figure 10: Olsson 241 nightly power usage for 11/24 - 11/28,
showing multiple peaks in power usage. Anomaly detection
for Olsson 241, showing that anomalies were occurring be-
tween the 24th and the 28th

6 Discussion
The development of the integrated energy spatial map system
demonstrates the potential of geospatial visualization and advanced
analysis to enhance understanding and optimization of complex
building energy data. By integrating InfluxDB with Python-based
data processing, geospatial visualization tools (GeoPandas, QGIS.
etc.), and comparative analysis software (Power BI), the workflow
establishes a replicable method for linking time-series energy con-
sumption data to specific spatial locations within a building.

The resulting visualization offers a bridge between quantitative
data and qualitative interpretation. It enables researchers, building
operators, and occupants to identify patterns of use, inefficiencies,
and opportunities for conservation without the need for specialized
data-science expertise. Beyond descriptive insight, this framework
could inform operational decision-making. For example, the map
would allow occupants and building managers alike to review the
past week’s power usage to see how occupants are using the space.
This knowledge can then be used to preemptively prime building
systems, such as scheduling theHVAC system for increased use only
when high occupancy is predicted, or allowing it to sit idle during
expected periods of low usage. Such predictive actions directly
contribute to decreasing operational costs by minimizing system
run time when certain services are not needed.

Minimizing unneeded energy consumption directly connects to
the main contribution of the project, which is providing actionable

data by detecting nighttime anomalies. By identifying unnecessary
power usage at nighttime and being able to identify and display
the spatial location of such an anomaly, it becomes very easy for
users to make positive changes. Whether this is an occupant look-
ing to make sure they are not consuming more power than their
fellow neighbors or a building manager trying to find areas to lower
costs, easy, intuitive visualization benefits everyone. The automated
pipeline detailed in the paper limits the human effort that is needed
to sort through thousands of data points and connect them back to
their real-world meaning. Instead, the anomaly visualization allows
non-useful energy to be easily identified and addressed to help limit
utility costs that the School of Engineering and Applied Science
will have to pay the University. The successful implementation of
this detection capability furthers the goal of the Link Lab to act as a
testbed for human-building interaction and increasing sustainable
development practices.

6.1 Areas of Risk
Since this project is complex and has several different parts, there
are a few risks that should be mentioned. First off, one of the main
difficulties faced was the lack of labeled training data. The models
have to simulate and detect whether or not power discrepancies are
considered normal or anomalies based on statistical analysis, not
actual behavior. Since labeled data is often not an option, the model
pipeline was built to train itself. Any additional training is beneficial
and reduces uncertainty; however, the model performs best when
the injected errors mirror typical patterns of excess energy use as
closely as possible. Also, since there are several platforms involved
in the current workflow, including Python/Geopandas, QGIS, and
Power BI, there could be some difficulty in the implementation
of the tool. This makes it harder for future researchers to address
any potential issues with the tool, as there are multiple pieces of
software involved. However, this paper has a very detailed meth-
ods section that should help alleviate some of this risk. Another
potential risk of the project is that there may not be many night-
time anomalies to address. This would limit the amount of financial
benefit that could come from visualizing unnecessary power usage
at night. Although this is a definite risk, the project still enhances
the important feature of data visualization, which in and of itself
is helpful. Additionally, even if sufficient power anomalies are not
found in the Link Lab, in the future, if there are ever more smart
buildings at UVA, this tool could be extrapolated to visualize those
spaces and optimize costs there as well.

6.2 Future Work
As previously mentioned, the nighttime anomaly detection model
can be expanded upon greatly for greater efficiency and reliability.
First, data should be categorized automatically based on a space’s
normal usage patterns. For example, the LLL is part of a Univer-
sity Building, mostly occupied by graduate students, researchers,
and professors. As such, most occupancy occurs during normal
9-5 hours and on weekdays. There are also seasonal variations in
occupancy depending on whether the University is on break. Hav-
ing a model that automatically categorizes for these different time
variables would improve the accuracy of the models, as different
time frames can be analyzed separately. Power use anomalies are
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expected to be different depending on building use, so segmenting
the data could lead to better-fitted models. Code was developed
for time categorization; however, due to a lack of time to properly
implement and run on the data, this feature was withheld.

Another vital step is connecting the error injection pipeline with
the key parameters of the detection pipeline. This would allow
the models to learn on their own, and while it cannot guarantee
the validity of the data, it can ensure the models are trained to
detect the desired events. Connecting the pipelines is not neces-
sarily difficult to achieve. Instead, the difficulty lies in simulating
a variety of undesirable power anomalies correctly. Currently, the
injection is any random value between the minimum and maximum
recorded power values; however, these injections should become
more tailored to represent real-world events, such as lights staying
on.

As alluded to previously, the models contain the capability of
calculating the amount of potential power saved per night, based
on the anomaly detection length and power value. This could be a
helpful metric for the end user, as wasted energy use can be directly
tied to cost savings, and would provide a better understanding of
the scope of nighttime energy utilization.

Future work should also expand the system’s analytical scope by
incorporating additional variables such as temperature, occupancy,
and air quality, thereby enabling multi-parameter correlations be-
tween environmental conditions and energy consumption. This
would allow for a more complete picture of how occupants utilize
a space and would allow for more accurate predictions on how a
space is going to be utilized. Implementing temporal interactiv-
ity and real-time data synchronization would further enhance its
applicability for continuous building performance monitoring. De-
spite current limitations—such as incomplete data coverage and
static temporal resolution—the workflow demonstrates a scalable
and adaptable model for advancing smart-building research and
sustainable facility management.

7 Conclusion
This project successfully developed and validated an integrated sys-
tem that helps visualize energy use spatially and detect nighttime
power anomalies within the University of Virginia’s Living Link
Lab. The system directly addresses the challenges of making en-
ergy data more accessible and intuitive to everyone while avoiding
unnecessary utility costs and environmental impacts.

The integrated system allows a high volume of time series data
from InfluxDB,whichwould normally be difficult and time-consuming
to analyze, to be easily translated into a highly visual and actionable
format. By successfully mapping aggregated energy data on a 2D
floor plan using CAD, QGIS, Python, and Geopandas, an intuitive
interface was created to provide context on how energy-intensive
different spaces in a building are. The ability to compare the en-
ergy consumption of various spaces historically and throughout
various chosen time periods was further simplified through the
use of Microsoft Power BI as a visualization platform. Furthermore,
the anomaly detection pipeline using rolling Z-score, IQR, and K-
means clustering was successfully implemented to identify and
flag potential nighttime anomalies where unnecessary energy use
occurs.

When this integrated system is used altogether, it moves beyond
passively using sensors to collect data. By utilizing visualization
and anomaly detection in conjunction, this project enables both
everyday occupants and building managers to easily identify and
address potential wastes of energy. This process is highly visual
and eliminates any coding or data black box that non-technical
users may not be able to understand. Consequently, the energy
visualization and nighttime anomaly detection have the potential
to initiate corrective action that can directly contribute to lowering
utility costs and emissions. These are both outcomes that tie into the
University and Link Lab’s goals for sustainable development and
lowering operational costs. While this project was mainly a proof of
concept, the further work section provides a strong foundation for
future research, and the detailed methodology section should make
it easy to understand the system structure. Finally, this system can
potentially be extrapolated to include other University buildings
and help reduce environmental and financial impact on a larger
scale.
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