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Abstract

This paper investigates whether a large language model
(LLM) can interpret continuous sensor data streams and pro-
vide human-readable explanations of environmental events
in indoor spaces. We design a system that retrieves raw time-
series measurements of power,and prompts an LLM to infer
entry/exit transitions and activity patterns without prede-
fined rules or model training. We evaluate the system on
real sensor data from a university building and show that
the LLM can consistently identify temporal transitions and
produce interpretable reasoning grounded in observed sen-
sor changes. The results demonstrate the feasibility of using
general-purpose LLMs for cross-sensor environmental rea-
soning, while also revealing limitations such as dependency
on prompt design and difficulty inferring fine-grained ac-
tivities from ambiguous signals. We conclude by discussing
the implications of this approach for building intelligence
and propose future work on multi-sensor fusion, improved
evaluation, and scaling to larger deployments.
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1 Introduction

Buildings play a central role in human life, with people spend-
ing nearly 90% of their time indoors [1]. Ensuring healthy,
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efficient, and well-functioning indoor environments is there-
fore critical for human well-being. Modern buildings are
increasingly instrumented with dense sensor networks that
monitor power consumption, air quality, noise levels, light-
ing, and occupancy-related signals. These sensing infrastruc-
tures reduce the need for frequent manual inspection and
enable remote monitoring by facility managers, but they also
generate large volumes of heterogeneous time-series data
that are difficult to interpret.

Despite the availability of rich sensor data, understand-
ing what these measurements actually mean in terms of
human presence, environmental events, or building usage
still requires significant expertise. Most existing building
analytics pipelines rely on threshold-based rules or narrowly
trained machine learning models, which often require exten-
sive manual tuning, predefined features, or labeled training
data. As a result, these methods struggle to generalize across
rooms, buildings, and usage patterns, and they rarely provide
intuitive, human-readable explanations of their outputs. This
gap between low-level sensor measurements and high-level
semantic understanding limits the accessibility of building
intelligence systems to non-experts.

Large language models (LLMs) suggest a promising al-
ternative. LLMs have demonstrated strong capabilities in
abstraction, pattern recognition, and reasoning across di-
verse input modalities. This raises a fundamental question
for smart building research: Can a general-purpose LLM inter-
pret continuous sensor data streams and produce meaningful,
human-readable explanations of environmental events without
relying on predefined rules or task-specific model training?

In this work, we explore this question by designing and
implementing the Facility Manager ReAct Agent, an LLM-
driven system that bridges raw sensor data and semantic
interpretation. The proposed agent integrates a ReAct-style
reasoning loop with a set of deterministic, domain-specific
tools that retrieve and summarize real building sensor data
from an InfluxDB backend. Given a natural-language query,
the agent autonomously selects appropriate tools, inspects
time-series power measurements, and produces grounded
explanations of room-level activity and usage patterns.
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We evaluate the system using real sensor data collected
from university classrooms and offices, focusing on two
classes of tasks: (1) numerical and structured queries about
power consumption over specified time windows, and (2)
higher-level semantic inference about when room activity is
likely occurring based solely on raw power signals. Through
these experiments, we demonstrate that the agent can reli-
ably perform quantitative analysis and consistently identify
temporal transitions in room usage, while also revealing fun-
damental limitations in inferring fine-grained activity types
from ambiguous, single-modality data.

Overall, this work contributes an end-to-end, LLM-based
framework for interpretable building analytics, highlighting
both the promise and the current boundaries of using general-
purpose language models for sensor-driven environmental
reasoning.

2 Problem Statement

Modern building sensor systems continuously collect large
volumes of time-series data, such as power consumption, en-
vironmental measurements, and occupancy-related signals.
While these data streams are valuable for facility monitor-
ing, they do not directly convey semantic information about
what is happening in a space. A spike in power usage, for ex-
ample, may indicate human presence, equipment operation,
or automated background processes, but the sensor values
alone do not provide an explicit explanation.

Existing building analytics approaches typically address
this challenge through predefined rules or task-specific mod-
els. Threshold-based methods flag events when sensor values
exceed manually chosen cutoffs, while classical time-series
techniques detect statistical changes without semantic in-
terpretation. More advanced approaches rely on supervised
machine learning models trained to classify activities or
occupancy states. However, these methods face several limi-
tations in real-world deployments: threshold rules are brittle
and require extensive tuning across rooms, change-point de-
tection produces events without human-interpretable mean-
ing, and supervised models depend on large amounts of
labeled data that are costly or infeasible to obtain at scale.

As a result, there remains a gap between low-level sensor
measurements and high-level, human-readable descriptions
of environmental events. In practice, facility managers and
occupants often need answers to qualitative questions such
as when a room was actively used, whether a space was likely
occupied, or whether observed behavior deviates from nor-
mal patterns, rather than raw numerical summaries alone.
Current systems provide limited support for such semantic
queries without significant manual effort or domain exper-
tise.

The problem addressed in this work is therefore not to
design a new predictive model for sensor values, but to en-
able semantic interpretation of continuous sensor streams.
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Specifically, we ask whether a general-purpose large lan-
guage model can examine raw or lightly processed sensor
data, identify meaningful temporal transitions, and gener-
ate grounded, human-readable explanations of room-level
events without relying on predefined rules or task-specific
model training. We focus on power consumption as a repre-
sentative signal and investigate the extent to which semantic
activity inference is possible under this constrained sensing
modality.

3 Motivation

In real-world building operations, sensor data are rarely con-
sumed directly by automated control systems alone. Instead,
they are frequently inspected by human stakeholders, in-
cluding facility managers, researchers, and occupants, who
must interpret numerical measurements and decide whether
further action is required. As sensor deployments scale in
size and complexity, this human-in-the-loop interpretation
becomes a growing bottleneck. Even when anomalies or
events are detected, understanding why they occurred and
what they likely represent remains a nontrivial task.

Traditional building analytics systems are not well aligned
with this interpretive need. Rule-based pipelines and ma-
chine learning models typically output alerts, labels, or nu-
merical scores, but provide limited contextual explanation.
As a result, users must manually reason about sensor trends,
correlate signals across time, and infer meaning from raw
plots or tables. This limits the accessibility of building in-
telligence to non-experts and reduces trust in automated
analytics, particularly when the system’s internal logic is
opaque.

Large language models offer a qualitatively different inter-
action paradigm. Rather than producing only predictions or
alerts, LLMs can consume structured evidence and generate
coherent, human-readable narratives that explain observed
patterns. This capability suggests that LLMs may serve as
an interpretive interface between low-level sensor measure-
ments and high-level semantic understanding, especially in
scenarios where explicit labels or rigid detection rules are
unavailable.

Motivated by this perspective, our work explores whether
an LLM can act as a semantic reasoning layer for building
sensor data. Instead of replacing existing analytics, we inves-
tigate how LLMs can augment them by translating sensor
streams into explanations that align with how humans natu-
rally reason about space usage and activity. Such an approach
has the potential to reduce expert burden, improve trans-
parency, and support more intuitive facility management
workflows, even when sensing is incomplete or ambiguous.

4 Methodology

We design and implement the Facility Manager ReAct Agent,
an LLM-based system for interpreting building sensor data
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and answering facility-related queries. The agent follows a
modular architecture that separates data access, determinis-
tic computation, and semantic reasoning. Rather than em-
bedding domain logic into prompt templates, the system
combines a general-purpose large language model with a
small set of deterministic tools that retrieve and summa-
rize sensor measurements. This design allows the LLM to
focus on interpretation and explanation, while all numerical
computation and data retrieval are handled explicitly and
verifiably.

Figure 1 illustrates the overall system structure. Given a
natural-language query, the agent reasons about the user’s in-
tent, selects appropriate tools, inspects the returned evidence,
and generates a grounded response through a ReAct-style
reasoning loop.

4.1 Deterministic Tool Design

The agent is equipped with three domain-specific tools that
provide structured access to building power data. All tools
are implemented as deterministic functions that query an
InfluxDB backend and return verifiable results. They do not
encode heuristic rules for activity detection or interpretation;
instead, they expose raw or aggregated measurements that
serve as evidence for the LLM’s reasoning process.

4.1.1 List Available Rooms. This tool queries the data-
base to retrieve a list of rooms for which power-consumption
data are available. It allows the agent to ground user queries
in valid room identifiers and prevents hallucination of nonex-
istent locations.

4.1.2 GetRoom Power Consumption. This tool retrieves
summary statistics of power consumption for a specified
room and time interval. Given a room identifier and a time
range, it computes the average, maximum, minimum, and
total energy usage directly from the underlying sensor mea-
surements.

4.1.3 GetPower Trend. This tool retrieves the time-series
power consumption signal for a given room and time period.
To control token budget while preserving salient temporal
structure, the tool returns a compact representation of the
signal, including downsampled data points and basic statis-
tics. This representation is sufficient for identifying major
transitions, sustained high-usage periods, and baseline be-
havior without exposing the full raw stream.

4.2 ReAct-Based Agent Reasoning

The Facility Manager ReAct Agent follows a ReAct-style rea-
soning process that interleaves reasoning and action. Given
a user query Q and a system prompt P, the agent iteratively
decides which tool to invoke, observes the returned evidence,
and updates its internal reasoning state. Once sufficient evi-
dence has been collected, the agent produces a final answer
grounded in the tool outputs.
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Formally, the agent’s behavior can be expressed as:
A=S(P.7T), (1)

where A denotes the final answer, S represents the agent
system, Q is the user query,  is the system prompt, and 7~
denotes the set of available tools.

Importantly, the LLM does not perform direct numeri-
cal computation or database access. Its role is to determine
which evidence is relevant, how to interpret observed pat-
terns, and how to communicate results in a human-readable
form. All quantitative results are derived from tool outputs,
ensuring transparency and reproducibility of the system’s
responses.

4.3 Model Configuration

All experiments in this work were conducted using the “x-
ai/grok-4.1-fast” large language model. The model was ac-
cessed via an API interface and used exclusively for rea-
soning, tool selection, and explanation generation. No fine-
tuning or domain-specific training was performed. The same
model and prompt configuration were used consistently
across all experiments reported in this paper.

5 Results

This section evaluates the performance of the Facility Man-
ager ReAct Agent on two categories of tasks: (1) numerical
and structured queries related to power consumption, and
(2) higher-level activity inference based solely on raw power
data. All experiments were conducted using real sensor mea-
surements from the InfluxDB database deployed in Olsson
Hall.

5.1 Accuracy on Numerical Queries

We first evaluated the agent’s ability to answer numerical
questions involving time-range power retrieval, statistical
computation, and room metadata exploration.(E.g. in Fig-
ure. 2) Across all tested numerical queries, the agent achieved
100% accuracy. For every question, the system:

o selected the correct measurement among multiple pos-
sible power-related streams,

e constructed a valid InfluxQL query,

e invoked the correct tool without malformed arguments,

e and accurately interpreted the returned numerical val-
ues.

Representative examples of questions and model responses
are shown below.

5.2 Tool-Usage Reliability

The agent demonstrated consistently stable ReAct behavior.
It correctly executed a single tool call per query, avoided hal-
lucinated fields or measurements, and handled all aggregation-
free raw data retrieval requests. The tool-calling mechanism
never produced invalid syntax during evaluation.



CS6501 Smart and Healthy Buildings Project, Dec 1, 2025, Charlottesville, VA Wenhao Xu, Chenxu Li, Sonia Birate, and Zeyang Zheng

User Question

Processed Data—» Al Agent —Generates—» Answer
) RawData__| | —
Three Tools e

Queries | Uses Tools

Figure 1. Overall architecture of the Facility Manager ReAct Agent. The agent iteratively reasons, invokes deterministic tools,
observes returned evidence, and produces a final explanation.

User:
How much power did room 211 Olsson use from 2025-11-10 13:45 to 14:15?

LLM Final Answer:
### Power Consumption Summary for Room 211 Olsson
Time Period: 2025-11-10 13:45 to 14:15 EST (30 minutes, 14 data points)

- Average Power: 84.58 W

- Max Power: 170.36 W

- Min Power: -0.06 W (likely sensor noise)
Estimated Total Energy: 0.042 kWh

Data sourced from 'power_w' measurement via 'location_specific' tag.

Figure 2. Numerical Power Query Response

Performance remained stable across a variety of query 5.4 Observations on Activity-Inference Performance

types, including: Qualitative inspection yields the following key observations:

e short windows (e.g., 30 minutes),

e full-day power usage analysis, e The model p.ro.duc.ed consistent segmentation of the
e multiple room identifiers with different tag-key map- day into activity intervals.
pings. e Interpretations were always grounded in real power

transitions and never fabricated events.

o Ambiguity was handled conservatively, with the agent
expressing uncertainty when appropriate.

e The model distinguished short spikes from sustained
high-use intervals.

5.3 Activity Inference from Power Consumption

To evaluate higher-level semantic reasoning, we tested the
agent’s ability to infer what activities likely occurred in a
room based solely on its power consumption profile. This task
requires the model to segment the time-series into periods
of varying load and associate these segments with potential
human or device activities.

We evaluated queries such as:

Although this task lacks deterministic ground truth, the
model’s responses were coherent, reproducible, and reflec-
tive of real electrical load patterns.

“What activities did 211 Olsson engage in during

5.5 Summary of Findings
which time periods on 2025-11-10?” Y &

e The agent achieved 100% accuracy on numerical power-

The results show that this is completely consistent with consumption queries.
the results of manual analysis, as shown in Figure. 3 and e Tool invocation was stable and error-free across all
Figure. 4. evaluated tasks.

Since the model received only raw power data — without e The model successfully interpreted real-world activity
motion, COz, or schedules — the task is inherently qualita- patterns from raw power data.
tive. Nevertheless, the agent consistently produced grounded e The results demonstrate the feasibility of combining
interpretations aligned with major transitions in the power LLMs with sensor databases for hybrid quantitative—semantic

pattern. analysis.
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User:
What activities did 211 Olsson engage in during which time periods on 2025-11-107?
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Figure 3. 211 Olsson 2025-11-10 All-day power consumption

LLM Final Answer:
### Power Usage Analysis for 211 Olsson on 2025-11-10

Overall Summary:
Average power: 24.05 W
Max power: 255.71 W

Min power: -0.31 W (likely sensor noise)
Total energy: 0.577 kWh
Baseline (idle/empty): ~2-3 W throughout unoccupied periods.

Power spikes indicate active occupancy or equipment use
(e.g., lights, computers, projectors in a likely classroom/lab setting).
Low usage suggests no activity (empty/standby).

Inferred Activity Periods (hourly aggregation; peaks align with max of 256 W):

Time Period

| Avg Power |

00:
10:
12:
14:
16:
18:
19:
22:

00
00
00

00

00 -
00 -

00 -
00 -

09:
100
13:
15:
17:

11

21

00

00
00
00

100
23:

00

| 2.3-2.5 |
| 34-98 |
| ~2.3 |
| 26-84 |
| 2.3-3.4 |
| 7.0 |
| 54-96 |
| ~2.3 |

Likely Activity

Idle (no activity)

High activity (class/occupancy)

Idle

Idle

Low activity (brief use?)
High activity (evening study/lab)

Idle

|
|
|
Moderate-high activity |
|
|
I
|

Figure 4. Activity Inference Based on Power Consumption

6 Discussion

The experimental results demonstrate that the Facility Man-
ager Agent is highly reliable for numerical reasoning tasks.
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Across all evaluated queries involving power retrieval, av-
eraging, extrema identification, and energy estimation, the
system achieved 100% accuracy. This suggests that the com-
bination of deterministic tool-calling and LLM-based inter-
pretation is effective for structured numerical operations
with well-defined ground truth.

For activity-related queries, the model also performed con-
sistently well in identifying when activities occurred. When-
ever a clear deviation from baseline power usage was present,
the agent accurately segmented the timeline into “active” ver-
sus “idle” intervals. These transitions were always aligned
with real changes in the underlying power measurements,
and the agent did not hallucinate non-existent patterns or
events.

However, the system exhibits fundamental limitations in
determining what specific activity occurred. Because power
consumption alone is a single, coarse, and indirect proxy
for human behavior, it is inherently insufficient for distin-
guishing between the large number of possible activities that
may occur in a room (e.g., lecture, studying, equipment test-
ing, cleaning, or incidental device use). Multiple real-world
scenarios can produce similar power signatures, including:

e activating different sets of electrical devices with com-
parable load,

e multiple short-duration activities overlapping tempo-
rally,

e background automated systems such as HVAC equip-
ment, chargers, or standby electronics.

As a result, the agent can reliably determine that “some ac-
tivity is taking place” during high-power periods, but cannot
resolve the semantic category of that activity without auxil-
iary signals.

This limitation arises not from the LLM itself but from
the inherent ambiguity of single-modality sensing. Power
data lacks spatial, behavioral, or contextual information, and
different activities often produce overlapping electrical signa-
tures. Accurate semantic activity classification would require
integrating additional sensor modalities such as CO,, motion
detection, acoustic patterns, or schedule information, which
were not provided in this experiment.

Despite these constraints, the observed behavior is con-
sistent with expectations for a power-only inference system.
The model does not over-interpret the data or fabricate de-
tails; rather, it provides reasonable, uncertainty-aware ex-
planations grounded entirely in the available measurements.
This suggests that LLM-based reasoning can be a robust in-
terface layer for translating sensor data into interpretable
narrative descriptions, provided that the underlying signals
contain sufficient semantic information.

Overall, the discussion highlights the strengths of the hy-
brid LLM-tool approach in numerical analysis and temporal
segmentation, while also emphasizing the intrinsic limits of
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activity-type inference when relying solely on power mea-
surements.

7 Conclusion

This work demonstrates that large language models can
interpret raw environmental sensor streams and provide se-
mantically meaningful explanations of room-level events.
Through experiments on real multi-sensor data, the system
successfully inferred occupancy transitions and broad activ-
ity phases by integrating power data. The LLM also produced
interpretable evidence traces, offering an advantage over
conventional threshold-based methods that lack contextual
reasoning.

However, the study also highlights several limitations. The
model remains sensitive to prompt structure, cannot always
generalize across longer temporal windows, and struggles
to determine specific activities when sensor signals are am-
biguous. The evaluation further indicates the need for richer
ground-truth labels and larger, more diverse datasets to rig-
orously assess performance.

Overall, the findings suggest that LLM-based reasoning
is a promising direction for developing flexible, data-driven
building intelligence systems. Future work will incorporate
additional sensor modalities, explore fine-tuning for domain-
specific robustness, and expand quantitative testing across
rooms and time scales to better evaluate generalization and
real-world deployment potential.

A Prompt and Tool Specifications
A.1 System Prompt

The following system prompt initializes the Facility Manager
ReAct Agent. It specifies the agent’s role, available capabil-
ities, and general behavioral constraints. The prompt does
not encode task-specific rules or heuristics.

You are an intelligent Facility Manager Assistant

specializing in building energy management.
Key capabilities:
. Estimate total energy consumption in kWh

. Provide power consumption trends over time
. List available rooms with monitoring data

g~ w N =

Time format guidance:

- Accept formats like "2025-11-10 14:00" or just "14:00"
(assumes today)

- Default timezone is America/New_York

Be professional, concise, and data-driven in your responses.

A.2 Tool Interface Specifications

The agent is provided with three deterministic tools imple-
mented as Python functions. These tools expose structured

. Query power consumption for specific rooms and time periods
. Calculate energy statistics (average, max, min power usage)
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access to building power data and do not contain heuristic
logic. Their behavior is fully defined by function signatures
and returned JSON schemas.

e get_power_trend: returns a time-series representa-
tion of power consumption over a given interval.

e list_available rooms: returns a list of rooms with References
available power monitoring data. [1] Neil E. Klepeis, William C. Nelson, Wayne R. Ott, John P. Robinson,
e get_room_power_consumption: returns summary Arlldy M. Tsang, Paul Switzer, Joseph V Behar, Stephen (‘:“Hern, and
- L. . . William H. Engelmann. 2001. The National Human Activity Pattern
statistics (mean, max, min, energy) for a specified room

Survey (NHAPS): A Resource for Assessing Exposure to Environmental
Pollutants. Journal of Exposure Science & Environmental Epidemiology
11, 3 (July 2001), 231-252. doi:10.1038/sj.jea.7500165

and time range.
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