Adaptive Noise Masking of Construction in Indoor Environments
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1. INTRODUCTION

Due to the increasing student population at universities
worldwide and the desire to provide more resources for
the student body, construction is a constant presence on
university campuses. The University of Virginia (UVA)
alone is working on eight construction projects
simultaneously that cover diverse usages, such as the
Karsh Institute of Democracy at the Ivy Corridor, the
fossil fuel-free energy plant in Fontaine Research Park,
and the VERVE Apartments at the intersection of
Jefferson Park Avenue, Emmet Street, and Stadium Road
[1]. Despite the obvious need for new construction to
support the growing community, the long duration of
construction is often met with criticism. One of the
primary concerns of construction is the highly disruptive
noise of machinery, heavy equipment, backup alarms, and
other on-site sources. This study in particular looks at
Olsson Hall on Engineer’s Way. A widely accessed hub
for all engineering studentsat UVA, the Link Lab, located
on the second floor of Olsson Hall, is often subject to
excessive construction noise that has been acknowledged
by occupants to disrupt comfort and productivity.

The noise level of a typical large office is about 50 dBA,
and construction noises can often increase this to more
than 80 dBA [2]. Additionally, the frequency of sound has
been found to be a major determinant in how disruptive
that sound was perceived; sounds of higher frequency,
which are often generated by construction sites, are
typically perceived as more annoying and aggressive than
lower frequency sounds of the same loudness [3]. Thus, it
is no surprise that construction noise is the primary source
of acoustic-related complaints in large cities, and the
sounds generated from construction can be difficult to
predict because they encompass a wide range of sound
energy levels [4]. Thus, it presents a unique opportunity
for study.

Previous studies examining the effects of various noise
levels on cognitive performance have shown that
exposure to loud noises at 95 dBA causes significant
changes in brain waves in the lobes responsible for
attention and managing mental workload [5]. These
reductions in brain function can greatly reduce
productivity in the workplace. In a similar study,
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productivity was measured for workers in the automobile
industry under various lighting and noise conditions.
While lighting conditions resulted in no significant
change in human productivity, an inverse relationship was
found between noise level and productivity. The study
concluded that a noise level below 85 dBA is needed to
increase employee productivity [6]. A third source
highlighting the effect of airport noise level on airport
workers showed a similar result. Excessive noise was
shown to increase work stress and decrease work
productivity [7].

Disruptive noise exposure not only affects employee
comfort and productivity but also may have significant
long-term impacts on their physical health. For instance, a
4-year study of male night-shift factory workers found
that those exposed to noise levels above 80 dB(A) during
8-hour shifts had a 3.36 times greater risk of developing
insomnia compared to those with lower exposure [8].
Similarly, another cross-sectional study of industrial
workers exposed to occupational noise found that those
with higher exposure were 2.5 times more likely to
experience both insomnia and hearing impairment,
showing that constant exposure to noise can negatively
impact sleep and hearing health [9]. Other studies have
found that occupants exposed to persistent occupational
noise experience significant increases in systolic blood
pressure, heart rate, and white blood cell count, amongst
other health effects, which were attributed to noise
pressure alone [10].

The pronounced effect of noise on employee comfort and
productivity at work calls for a solution. While passive
noise control methods, such as soundproof walls,
silencers, and enclosures, help block out noise, they are
often insufficient to block all frequencies. Construction
noises vary widely based on the type of equipment and
activity, but passive noise control methods are most
effective for high-frequency noises. Thus, several studies
havelooked at other noise control methods, such as active
noise control methods and sound masking, to better
control the negative effects of construction noise. Active
noise control refers to canceling sound waves by
producing a sound that can negate the sound being
produced by the noise source, and has been shown to be



useful for canceling low to mid-frequency sounds [11].
Another method, sound masking, which involves the
application of sounds to alter the perception of the noise
source, has also been examined in the context of
construction noise [4].

Auditory masking refers to the perception of a target
sound (in our case, construction noise) being made harder
to hear, or “masked”, by another sound, and this could
refer to three types: simultaneous masking, forward
masking, or backward masking [4]. In this study, we will
study the sound recognition framework of such system
thatanalyzesa stream of incoming data to detect changes
in the acoustic environment indicative of external
construction noise.

The Link Lab is a research space at the University of
Virginia where students and faculty collaborate to
advance innovation in the field of cyber-physical systems.
One of the objectives of this lab is to collect and analyze
real-time data and develop resources that can be used in
smart cities and promote the construction of smart and
healthy buildings. The lab is an excellent location fordata
collection as it serves as a space that is relatively quiet,
with the greatest auditory interferences originating from
human speech from meetings within each office space
and, during the data collection period, construction noise
from the VERVE construction site across the street.

1.1. Problem Statement

How can the intersection between reactive noise
classification and white noise activation be implemented
in a real space to minimize the impact of construction
noises and improve acoustic comfort for room occupants?

1.2. Motivation

Studies have shown that disruptive noise can negatively
impact work productivity [S]. In urban areas, construction
and excessive street noise continue to disrupt common
work environments, making it difficult to focus and
communicate effectively.

More specifically, in the Living Link Lab, a collaborative
space at the University of Virginia, the construction of a
large apartment complex adjacent to Olsson Hall has
contributed to unwanted construction noise. Traditionally,
external sound is mitigated with soundproofing panels
and windows; however, these solutions are often
permanent and require a significant capital cost.
Additionally, they promote a “one-size-fits-all” mentality
by simply dampening the sound without limiting noise
variability, which can be a distraction in itself.

This system has the potential to enhance occupant
comfort and productivity by mitigating perceived noise
bursts from external sources with an actuated white noise
generator, thereby providing a consistent background

noise that is ideal for maintaining occupant productivity
and comfort.

1.3. Project Objectives
1. Record and manually label construction
sounds in the link lab using ReSpeaker Mic
Array v2.0 by Seeed Studio

2. Train a machine learning model to classify
audio based on the presence of construction
noise using Librosa Python software

3. Apply the model to a large audio dataset to
identify construction and determine the
theoretical actuation of a white noise
generator

2. METHODOLOGY

The original approach to tackling the problem statement
was to utilize real-time time-series sensor data retrieved
from the University of Virginia’s InfluxDB database, with
the idea that we could leverage this existing sound
pressure level (spl_a) data to train a model that could
predict when acoustic anomalies may occur. However,
due to the constraint of spl_a data being solely amplitude
and not full waveform audio data, it could not be used to
determine the actual source of the sound, as decibels
alone are not indicative of construction, and the noise
bursts often exist at too high a frequency to be captured
every 3 seconds. Figure 1 shows the data stream fora
spl_a sensor. Originally, it was assumed that thresholds
could be set based on amplitude anomaly detection from
spl_a data; however, it was quickly determined that
loudness is not the best determinant forsounds that affect
acoustic health and comfort in academic settings.

Olsson 211 - September 15th, 2025, Device: 70886b123735
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Figure 1. Mean Sound Pressure Level (dBA) for Olsson
211 1d:70886b123735 on September 15,2025, grouped in
one-minute intervals.

The maximum dBA level in Olsson 211 only reached 65

dBA, consistent with normal conversation. The baseline

noise level, during periods of inoccupancy, was found to
be approximately 52 dBA. All of these values are



considered safe, compared to the 75 dBA limit enforced
by the World Health Organization [12]. The lack of high
frequency data, and variable sound pressure data evident
in Figure 1, clearly illustrate why spl_a could not be used
as a proxy for construction noise. This further emphasizes
the need for sound identification to enhance occupant
comfort, rather than sound pressure alone.

Weighing these findings, our updated method leverages
the use of waveform audio data (wav) collected from a
ReSpeaker Mic Array v2.0 by Seeed Studio, operating
through Raspberry Pi OS. Waveform audio enables us to
separate sound data into individual frequencies, allowing
us to isolate sounds that may be considered disturbing or
unwanted. We developed and trained our model on .wav
data collected over a 24-hour period from November 12th
to 13th, 2025, beginning at 11:30 am. The sensor was
deployed in Olsson 241 inside a personal office, which is
less than a tenth of a mile away from the VERVE
construction site as shown in Figure 2. Full permission
from occupants was obtained prior to recording.
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Figure 2. Location of Personal Office (Olsson 241) in
relation to the VERVE construction site.

To pre-process the data, the 24-hour waveform recording
was split into 10-second chunks and stored in a directory
using the makedirs function in Python. 10-second chunks
were selected to reduce the manual load for labeling as an
initial framework. While shorter windows could add
temporal resolution, it would have required extensive
manual labeling. The subsequent 10 second audio files
were split into two subsections. A manual subsection was
created, comprising 20% of the entire recording, to test
and train the model. The other 80% of the data was
further classified once the model had been trained.

To provide usable data for the model and Librosa to
process, the manual dataset was labeled by listening to
each audio chunk for acoustic signatures characteristic of
construction. For each 10-second chunk, we recorded a 1
if no construction was detected and a 0 if construction
was detected. If construction noise was identified at any
point during the 10-second chunk, the chunk would be
labeled with a 0, regardless of the type of noise. This
includes impact tools, power tools, emergency sirens and

backup alarms, heavy equipment, and material handling.
It is important to note that for periods of talking within
the collection room, a 1 was given to teach the model not
to classify ordinary conversation as construction, which
was otherwise the dominant acoustic source. The
observations were recorded in a CSV file, totalling 1619
10-second chunks, or 4.5 hours.

Once the subsection was entirely labeled, a random forest
classifier was trained on the 1619 manually labeled data
points. A standard 80-20 train-test split was performed on
this data with stratification to ensure that the train-test
split consisted of the same proportion of each of the
classification labels as the original data. A standard scaler
was then used to normalize the features for the model,
avoiding disproportionate weightage to any one feature.
The model was then trained on this scaled training data
and predictions were made on the scaled testing data. The
outputted classification report and confusion matrix are
shown below in Tables 1 and 2.

The model parameters and scaler settings were then saved
so that they could be used to predict the existence of
construction noise for the remaining 10-second clips
(80% of the total data). For each data point, the sound
features were first extracted using Librosa and then scaled
with the Standard Scaler before prediction was made. The
following information was captured and exported to a .csv
file for each data point: filename, label, source, and model
probability. The completed count of all 10-second audio
chunks containing construction noise over the course of
the collection period is illustrated in Figure 3 of the
results section.

Additional processing was done on these model results to
determine when the white noise actuator should be turned
on or off. Because the classifier didn’t output prediction
labels in the order of the audio clips, data was first sorted
in chronological order, and a “TOD” column was added
to represent the time of day that the audio clip
corresponded to. Deciding the ON/OFF settings for the
white noise actuator system presents several unique
challenges that require a precise balance. For instance,
due to potential time latencies in the switch from an OFF
— ON or ON — OFF state, switches were minimized for
disruptions that occurred in small time windows. In
addition, construction noise happens in unpredictable
patterns and discrete discontinuous time blocks, so recent
probability predictions should be given a higher
weightage. Exponential moving average (EMA) and
simple hysteresis were utilized to enforce these
constraints and come up with state predictions for the
actuator.

The following EMA formula was used to calculate the
smoothed probabilities:

EMA, = (Prob, x k) + (EMA,_, x (1 —k))
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Figure 3. Distribution of construction noise events across the 24-hour data collection period (Nov 12th, 2025, 11:30 am -
Nov 13, 2025) grouped into half-hour intervals. Indications of high construction activity are evident throughout the
morning and afternoon consistent with standard work hours.

After manually testing several values for the EMA
hyperparameter, k, a value of 0.3 was chosen. The small
magnitude is associated with an increased emphasis on
the more recent data points. Once the smoothed
probability is generated for a data point, it is compared
with a low threshold and a high threshold value to
determine the actuator setting. After several rounds of
manual testing, the low threshold value was chosen to be
0.15, while the high threshold value was chosen to be 0.4.
If the smooth probability is less than the low threshold,
the actuator is turned off. If the smoothed probability is
higher than the high threshold, the actuator is turned on.
However, if the smoothed probability lies in between the
two thresholds, the actuator setting is the same as what it
was for the previous data point. The low threshold values
reflect the prioritization of true positives over true
negatives in the choosing of the actuator setting.

3. RESULTS

The outcomes of model training are represented in two
subsections. The manual results pertain to the ground-
truth determination made by listening, and the model
results are the remaining audio chunks labeled based on
the random forest classifier model.

3.1. Manual Results

For the 1619 10-second chunks listened to, we recorded
735 instances where construction was audible (0) and 883
instances where it was not detected (1). Most data were
gathered from near the beginning and end of the
recording, as these were most in line with hours of the
standard workday, when construction would be most
present. This was an attempt to capture a similar quantity
of Os and 1s to provide the model.

3.2. Model Results

Using a random forest classification model, the manual
data set is then split 80/20 into training and testing sets,
respectively. The testing set was evaluated on its
performance, outlined in the classification report in Table
1 below.

Table 1. Classification Report of Training Set

precision | recall |fl-score| support

0 0.7908 |0.8231| 0.8067 147
1 0.8480 |0.8192] 0.8333 177
accuracy 0.8210 324

macro avg 0.8194 [0.8212( 0.8200 324

weighted avg | 0.8220 |[0.8210( 0.8212 324

Table 1 indicates that the model correctly predicted
construction 79% of the time and non-construction 84%
of the time, as indicated by the precision. The recall, on
the otherhand, examines how many of the detected events
it accurately identified within n support values. The f1-
score is the harmonic mean of both the precision and
recall for each identifier. All of this together led to a set
accuracy of 82% for this model. The relative breakdown
of these decisions is displayed in Table 2.

Table 2. Confusion Matrix of Training Set

positive | negative

true 121 145

false 32 26




For the 324 testing points, the model correctly identified
121 construction events and 145 non-construction results.
There were also 32 false construction events and 26 false
non-construction events.

The trained model then labeled all data over the 24-hour
collection period, amassing 8,646 audio chunks. The
model predicted 6,662 instances of no construction and
1,983 instances of construction over the 24-hour period.
The total occurrences of construction (Label=0)ata
specific time of day (TOD) are shown in Figure 3 above.
Construction was most prevalent during the hours of 7:00
amto 11:00 am and 12:00 pm to 5:00 pm.

4. DISCUSSION

The results of this study indicate that a reactive
construction noise classification system can be
implemented using waveform audio and machine learning
based detection. Assuming that construction noise is
acoustically distinct from other building/city/occupant-
generated sounds, and that 10-second audio segments are
an appropriate interval for proper classification, this
application could be used in similar settings where
construction noise is a major complaint for building
occupants.

An overall accuracy of 82% between precision and recall
statistics for the classification model is promising,
considering the relatively small training and testing sets
and thatthe manually labeled data waslabeled by humans
with only audio data, without the use of supplementary
video validation data. This is especially impressive
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considering that 10 seconds is a relatively long interval
for construction noise identification, since many
construction noises often occur in short bursts of less than
a second; model precision would likely improve with a
larger data set of shorter interval audio chunks.
Additionally, the use of manually labeled data introduces
subjectivity to the labeler which could have contributed to
the 18% of inaccurate data.

Nonetheless, the model yields promising results for
identifying construction noises. Using a random forest
classifier is useful considering the variable nature of
construction noise. Different sounds, including alarms,
heavy machinery, and impacts, vary in their acoustic
parameters. A forest classifier allows the model to
consider multiple decision trees, all without placing undue
weight on a specific sound or trend in the data. In our
case, the model was able to classify a variety of different
construction noises emitting from the VERVE
construction site.

In part, this is also dueto the audio classification provided
by Librosa that pairs with the random forest model. Using
Librosa, we were able to extract specific acoustic features
from the waveform audio that are characteristic of the
specific type of construction that is occurring. These
features provide a qualitative representation of each audio
chunk, allowing the model to learn the relationships with
their classification label. Figure 4 below displays a mel
spectrogram illustrating these acoustic patterns and their
classification label.

Reverse Alarm (Label 0)

e A

!
0 15 3 4.5 6 7.5 9
Time

Hammer (Label 0)

16384

8192

4096

2048

Mel frequency (Hz)

1024
B

512
L ¥

| |
i '
B i ol i s M!."!l iy .unt"l.'
0 15 3 4.5 6 7.5 9
Time (s)

Hz

1Y !
15 3 4.5 6 7.5 9
Time

Emergency Siren (Label 0)

‘i'ul‘

y — — T T T
15 3 4.5 6 7.5 9
Time (s)

Figure 4. Mel-spectrogram representations of sample audio samples, comparing nighttime ambience (1) to
several construction noise types (0), including a vehicle reverse alarm, hammer impacts, and emergency siren
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White Noise Actuator ON/OFF Over Time
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Figure 5. Same histogram as shown in Figure 3, grouped by the hour, overlaid with a plot showing the tuned suggestions for
turning off/on the white noise actuator system. The suggestions demonstrate the use of the EMA hyperparameter and

hysteresis logic to limit off/on cycles of the actuator, essential for occupant comfort.

The nighttime spectrogram, labeled 1 by the model, the various time points directly correlate with the increase
shows no variability over the 10-second chunk with a low in construction noise datapoints in any particular hour. In
general amplitude compared to other spectrograms. The addition, though the raw labels for the data points, as
other three spectrograms were all labeled as construction predicted by the model, were shifting continuously

by the model, representing a reverse alarm, a hammer, and between 1s and 0Os, the EMA and hysteresis method

an emergency siren upon listening to the specific audio greatly reduced the number of transitions from ON —
chunks. Visual inspection of these spectrograms shows OFF or OFF — ON, which was one of the goals of the
unique patterns related to the construction noise they are actuator system.

attributed to. All three exhibit low-amplitude, high-
frequency repetitive noises at around 2000 Hz; conditions
that seem to be evident in most construction events, as
they originate from outside the building. Using the audio
features extracted by Librosa, the model assigned each
chunk a probability to designate its classification. The
individual model-based probability and smoothed
context-dependent probability are presented in Table 3

This work was completed under the assumption that a
consistent white-noise is a preferable alternative to
infrequent construction noises by the occupant. The
output of the model indicated that the white noise
generator would run essentially non-stop during the
workday and only turn off during lunchtime or after the
construction workers leave for the day. Balancing
between responsiveness and stability for the actuator and

low. . e
below the psychological effect that differing actuator
Table 3. Model-based probability to contain construction sensitivities could have on the occupant is an important
consideration that has not been accounted for in this study
Sound Model prob. |Smoothed prob. but could be an avenue for future work.
Nighttime 0.005 0.0615 Overall, this study demonstrated the feasibility of using
Reverse Alarm 0.94 0.799 machine learning audio classification to support a white
Hammer 0.88 0.797 noise generator as a means to mitigate an acoustic
: environment polluted by construction noise There were
Biiensencyibiien 0.86 0818 clear limitations to dataset size and labeling assumptions,
Despite all three construction sounds having a generally which can be easily expanded on for future work.
high model-based probability, the smoothed probability Nonetheless, the findings suggest that construction noise
shows a lower value, taking into account instances of no- can be autonomously identified using machine learning,
construction in time proximity to the selected audio which serves as motivation for the future development of
chunk. a fully automated dynamic noise masking system.
Utilizing the smoothed probabilities processed by the 4.1. Future Work
EMA and hysteresis methodology, Figure 5 displays the More work is needed to apply this system to real-world
suggestions for the actuator settings as either "ON" or applications. Expanding the dataset to include a more
"OFF". It is evident that the suggested actuator settings at diverse set of audio recordings from different rooms in



Olsson Hall would allow the model to capture a broader
spectrum of acoustic conditions. The current dataset only
covers one space from a single 24-hour period in Olsson
241, but this does not fully capture the range of intensities
and frequencies that are heard throughout the building.
Future work could also prioritize the collection of audio
from outside the building concurrently with indoor
recordings, enabling more accurate labeling by reducing
acoustic indoor interference that may lead to
misclassifications. Additionally, future refinement of the
model could include sliding frame windows instead of 10-
second audio chunks for more accuracy, or different
actuation parameters optimized to prevent frequent
cycles, while maintaining acoustic comfort.

The ultimate goal of this system would be to process
audio in real-time. Currently, all processing is reactive,
analyzing pre-recorded audio. In the future, the model
could process real-time audio recordings so that it can
predict construction bursts as they occur and activate the
white noise generator autonomously. Evaluating the
effectiveness of a white noise generator was beyond the
scope of this project but should be immediately tested
with the implementation of real time processing, and
tested for occupant perception.
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during periods of site inactivity. These findings suggest
that a reactive system that distinguishes between
construction noises and non-construction noises and acts
based on this classification is feasible, with room for
expansion.
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