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1. INTRODUCTION 
Due to the increasing student population at universities 

worldwide and the desire to provide more resources for 

the student body, construction is a constant presence on 

university campuses. The University of Virginia (UVA) 

alone is working on eight construction projects 

simultaneously that cover diverse usages, such as the 

Karsh Institute of Democracy at the Ivy Corridor, the 

fossil fuel-free energy plant in Fontaine Research Park, 

and the VERVE Apartments at the intersection of 

Jefferson Park Avenue, Emmet Street, and Stadium Road 

[1]. Despite the obvious need for new construction to 

support the growing community, the long duration of 

construction is often met with criticism. One of the 

primary concerns of construction is the highly disruptive 

noise of machinery, heavy equipment, backup alarms, and 

other on-site sources. This study in particular looks at 

Olsson Hall on Engineer’s Way. A widely accessed hub 

for all engineering students at UVA, the Link Lab, located 

on the second floor of Olsson Hall, is often subject to 

excessive construction noise that has been acknowledged 

by occupants to disrupt comfort and productivity. 

The noise level of a typical large office is about 50 dBA, 

and construction noises can often increase this to more 

than 80 dBA [2]. Additionally, the frequency of sound has 

been found to be a major determinant in how disruptive 

that sound was perceived; sounds of higher frequency, 

which are often generated by construction sites, are 

typically perceived as more annoying and aggressive than 

lower frequency sounds of the same loudness [3]. Thus, it 

is no surprise that construction noise is the primary source 

of acoustic-related complaints in large cities, and the 

sounds generated from construction can be difficult to 

predict because they encompass a wide range of sound 

energy levels [4]. Thus, it presents a unique opportunity 

for study. 

Previous studies examining the effects of various noise 

levels on cognitive performance have shown that 

exposure to loud noises at 95 dBA causes significant 

changes in brain waves in the lobes responsible for 

attention and managing mental workload [5]. These 

reductions in brain function can greatly reduce 

productivity in the workplace. In a similar study, 

productivity was measured for workers in the automobile 

industry under various lighting and noise conditions. 

While lighting conditions resulted in no significant 

change in human productivity, an inverse relationship was 

found between noise level and productivity. The study 

concluded that a noise level below 85 dBA is needed to 

increase employee productivity [6]. A third source 

highlighting the effect of airport noise level on airport 

workers showed a similar result. Excessive noise was 

shown to increase work stress and decrease work 

productivity [7]. 

Disruptive noise exposure not only affects employee 

comfort and productivity but also may have significant 

long-term impacts on their physical health. For instance, a 

4-year study of male night-shift factory workers found 

that those exposed to noise levels above 80 dB(A) during 

8-hour shifts had a 3.36 times greater risk of developing 

insomnia compared to those with lower exposure [8]. 

Similarly, another cross-sectional study of industrial 

workers exposed to occupational noise found that those 

with higher exposure were 2.5 times more likely to 

experience both insomnia and hearing impairment, 

showing that constant exposure to noise can negatively 

impact sleep and hearing health [9]. Other studies have 

found that occupants exposed to persistent occupational 

noise experience significant increases in systolic blood 

pressure, heart rate, and white blood cell count, amongst 

other health effects, which were attributed to noise 

pressure alone [10].  

The pronounced effect of noise on employee comfort and 

productivity at work calls for a solution. While passive 

noise control methods, such as soundproof walls, 

silencers, and enclosures, help block out noise, they are 

often insufficient to block all frequencies. Construction 

noises vary widely based on the type of equipment and 

activity, but passive noise control methods are most 

effective for high-frequency noises. Thus, several studies 

have looked at other noise control methods, such as active 

noise control methods and sound masking, to better 

control the negative effects of construction noise. Active 

noise control refers to canceling sound waves by 

producing a sound that can negate the sound being 

produced by the noise source, and has been shown to be 
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useful for canceling low to mid-frequency sounds [11]. 

Another method, sound masking, which involves the 

application of sounds to alter the perception of the noise 

source, has also been examined in the context of 

construction noise [4]. 

Auditory masking refers to the perception of a target 

sound (in our case, construction noise) being made harder 

to hear, or “masked”, by another sound, and this could 

refer to three types: simultaneous masking, forward 

masking, or backward masking [4]. In this study, we will 

study the sound recognition framework of such system 

that analyzes a stream of incoming data to detect changes 

in the acoustic environment indicative of external 

construction noise. 

The Link Lab is a research space at the University of 

Virginia where students and faculty collaborate to 

advance innovation in the field of cyber-physical systems. 

One of the objectives of this lab is to collect and analyze 

real-time data and develop resources that can be used in 

smart cities and promote the construction of smart and 

healthy buildings. The lab is an excellent location for data 

collection as it serves as a space that is relatively quiet, 

with the greatest auditory interferences originating f rom 

human speech from meetings within each office space 

and, during the data collection period, construction noise 

from the VERVE construction site across the street. 

1.1. Problem Statement 
How can the intersection between reactive noise 

classification and white noise activation be implemented 

in a real space to minimize the impact of construction 

noises and improve acoustic comfort for room occupants? 

1.2. Motivation 
Studies have shown that disruptive noise can negatively 

impact work productivity [5]. In urban areas, construction 

and excessive street noise continue to disrupt common 

work environments, making it difficult to focus and 

communicate effectively. 

More specifically, in the Living Link Lab, a collaborative 

space at the University of Virginia, the construction of a 

large apartment complex adjacent to Olsson Hall has 

contributed to unwanted construction noise. Traditionally, 

external sound is mitigated with soundproofing panels 

and windows; however, these solutions are often 

permanent and require a significant capital cost. 

Additionally, they promote a “one-size-fits-all” mentality 

by simply dampening the sound without limiting noise 

variability, which can be a distraction in itself. 

This system has the potential to enhance occupant 

comfort and productivity by mitigating perceived noise 

bursts from external sources with an actuated white noise 

generator, thereby providing a consistent background 

noise that is ideal for maintaining occupant productivity 

and comfort. 

1.3. Project Objectives 
1. Record and manually label construction 

sounds in the link lab using ReSpeaker Mic 

Array v2.0 by Seeed Studio 

2. Train a machine learning model to classify 

audio based on the presence of construction 

noise using Librosa Python software 

3. Apply the model to a large audio dataset to 

identify construction and determine the 

theoretical actuation of a white noise 

generator 

2. METHODOLOGY 
The original approach to tackling the problem statement 

was to utilize real-time time-series sensor data retrieved 

from the University of Virginia’s InfluxDB database, with 

the idea that we could leverage this existing sound 

pressure level (spl_a) data to train a model that could 

predict when acoustic anomalies may occur. However, 

due to the constraint of spl_a data being solely amplitude 

and not full waveform audio data, it could not be used to 

determine the actual source of the sound, as decibels 

alone are not indicative of construction, and the noise 

bursts often exist at too high a frequency to be captured 

every 3 seconds. Figure 1 shows the data stream for a 

spl_a sensor. Originally, it was assumed that thresholds 

could be set based on amplitude anomaly detection from 

spl_a data; however, it was quickly determined that 

loudness is not the best determinant for sounds that affect 

acoustic health and comfort in academic settings. 

 

Figure 1. Mean Sound Pressure Level (dBA) for Olsson 

211 Id:70886b123735 on September 15, 2025, grouped in 

one-minute intervals. 

The maximum dBA level in Olsson 211 only reached 65 

dBA, consistent with normal conversation. The baseline 

noise level, during periods of inoccupancy, was found to 

be approximately 52 dBA. All of these values are 
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considered safe, compared to the 75 dBA limit enforced 

by the World Health Organization [12]. The lack of high 

frequency data, and variable sound pressure data  evident 

in Figure 1, clearly illustrate why spl_a could not be used 

as a proxy for construction noise. This further emphasizes 

the need for sound identification to enhance occupant  

comfort, rather than sound pressure alone. 

Weighing these findings, our updated method leverages 

the use of waveform audio data (.wav) collected from a 

ReSpeaker Mic Array v2.0 by Seeed Studio, operating 

through Raspberry Pi OS. Waveform audio enables us to 

separate sound data into individual frequencies, allowing 

us to isolate sounds that may be considered disturbing or 

unwanted. We developed and trained our model on .wav 

data collected over a 24-hour period from November 12th 

to 13th, 2025, beginning at 11:30 am. The sensor was 

deployed in Olsson 241 inside a personal office, which is 

less than a tenth of a mile away from the VERVE 

construction site as shown in Figure 2. Full permission 

from occupants was obtained prior to recording. 

 
Figure 2. Location of Personal Office (Olsson 241) in 

relation to the VERVE construction site. 

To pre-process the data, the 24-hour waveform recording 

was split into 10-second chunks and stored in a directory 

using the makedirs function in Python. 10-second chunks 

were selected to reduce the manual load for labeling as an 

initial framework. While shorter windows could add 

temporal resolution, it would have required extensive 

manual labeling. The subsequent 10 second audio files 

were split into two subsections. A manual subsection was 

created, comprising 20% of the entire recording, to test 

and train the model. The other 80% of the data was 

further classified once the model had been trained. 

To provide usable data for the model and Librosa to 

process, the manual dataset was labeled by listening to 

each audio chunk for acoustic signatures characteristic of 

construction. For each 10-second chunk, we recorded a 1 

if no construction was detected a nd a 0 if construction 

was detected. If construction noise was identified at any 

point during the 10-second chunk, the chunk would be 

labeled with a 0, regardless of the type of noise. This 

includes impact tools, power tools, emergency sirens and 

backup alarms, heavy equipment, and material handling. 

It is important to note that for periods of talking within 

the collection room, a 1 was given to teach the model not 

to classify ordinary conversation as construction, which 

was otherwise the dominant acoustic source. The 

observations were recorded in a CSV file, totalling 1619 

10-second chunks, or 4.5 hours.  

Once the subsection was entirely labeled, a random forest 

classifier was trained on the 1619 manually labeled data 

points. A standard 80-20 train-test split was performed on 

this data with stratification to ensure that the train-test 

split consisted of the same proportion of each of the 

classification labels as the original data. A standard scaler 

was then used to normalize the features for the model, 

avoiding disproportionate weightage to any one feature. 

The model was then trained on this scaled training data 

and predictions were made on the scaled testing data. The 

outputted classification report and confusion matrix are 

shown below in Tables 1 and 2. 

The model parameters and scaler settings were then saved 

so that they could be used to predict the existence of 

construction noise for the remaining 10-second clips 

(80% of the total data). For each data point, the sound 

features were first extracted using Librosa and then scaled 

with the Standard Scaler before prediction was made. The 

following information was captured and exported to a .csv 

file for each data point: filename, label, source, and model 

probability. The completed count of all 10-second audio 

chunks containing construction noise over the course of 

the collection period is illustrated in Figure 3 of the 

results section. 

Additional processing was done on these model results to 

determine when the white noise actuator should be turned 

on or off. Because the classifier didn’t output prediction 

labels in the order of the audio clips, data was first sorted 

in chronological order, and a “TOD” column was added 

to represent the time of day that the audio clip 

corresponded to. Deciding the ON/OFF settings for the 

white noise actuator system presents several unique 

challenges that require a precise balance. For instance, 

due to potential time latencies in the switch from an OFF 

→ ON or ON → OFF state, switches were minimized for 

disruptions that occurred in small time windows. In 

addition, construction noise happens in unpredictable 

patterns and discrete discontinuous time blocks, so recent 

probability predictions should be given a higher 

weightage. Exponential moving average (EMA) and 

simple hysteresis were utilized to enforce these 

constraints and come up with state predictions for the 

actuator. 

The following EMA formula was used to calculate the 

smoothed probabilities: 

𝐸𝑀𝐴𝑡 = (𝑃𝑟𝑜𝑏𝑡  × 𝑘) + (𝐸𝑀𝐴𝑡 −1  × (1 − 𝑘) ) 
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After manually testing several values for the EMA 

hyperparameter, k, a  value of 0.3 was chosen. The small 

magnitude is associated with an increased emphasis on 

the more recent data points. Once the smoothed 

probability is generated for a data point, it is compared 

with a low threshold and a high threshold value to 

determine the actuator setting. After several rounds of 

manual testing, the low threshold value was chosen to be 

0.15, while the high threshold value was chosen to be 0.4. 

If the smooth probability is less than the low threshold, 

the actuator is turned off. If the smoothed probability is 

higher than the high threshold, the actuator is turned on. 

However, if the smoothed probability lies in between the 

two thresholds, the actuator setting is the same as what it 

was for the previous data point. The low threshold values 

reflect the prioritization of true positives over true 

negatives in the choosing of the actuator setting. 

3. RESULTS 
The outcomes of model training are represented in two 

subsections. The manual results pertain to the ground-

truth determination made by listening, and the model 

results are the remaining audio chunks labeled based on 

the random forest classifier model. 

3.1. Manual Results 
For the 1619 10-second chunks listened to, we recorded 

735 instances where construction was audible (0) and 883 

instances where it was not detected (1). Most data were 

gathered from near the beginning and end of the 

recording, as these were most in line with hours of the 

standard workday, when construction would be most 

present. This was an attempt to capture a similar quantity 

of 0s and 1s to provide the model.  

3.2. Model Results 
Using a random forest classification model, the manual 

data set is then split 80/20 into training and testing sets, 

respectively. The testing set was evaluated on its 

performance, outlined in the classification report in Table 

1 below.  

Table 1. Classification Report of Training Set 

 
precision recall f1-score support 

0 0.7908 0.8231 0.8067 147 

1 0.8480 0.8192 0.8333 177 

accuracy 
  

0.8210 324 

macro avg 0.8194 0.8212 0.8200 324 

weighted avg 0.8220 0.8210 0.8212 324 

Table 1 indicates that the model correctly predicted 

construction 79% of the time and non-construction 84% 

of the time, as indicated by the precision. The recall, on 

the other hand, examines how many of the detected events 

it accurately identified within n support values. The f1-

score is the harmonic mean of both the precision and 

recall for each identifier. All of this together led to a set 

accuracy of 82% for this model. The relative breakdown 

of these decisions is displayed in Table 2. 

Table 2. Confusion Matrix of Training Set 

 
positive negative 

true 121 145 

false 32 26 

Figure 3. Distribution of construction noise events across the 24-hour data collection period (Nov 12th, 2025, 11:30 am - 

Nov 13, 2025) grouped into half-hour intervals. Indications of high construction activity are evident throughout the 

morning and afternoon consistent with standard work hours.  
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For the 324 testing points, the model correctly identified 

121 construction events and 145 non-construction results. 

There were also 32 false construction events and 26 false 

non-construction events.  

The trained model then labeled all data over the 24-hour 

collection period, amassing 8,646 audio chunks. The 

model predicted 6,662 instances of no construction and 

1,983 instances of construction over the 24-hour period. 

The total occurrences of construction (Label = 0) at a  

specific time of day (TOD) are shown in Figure 3 above. 

Construction was most prevalent during the hours of 7:00 

am to 11:00 am and 12:00 pm to 5:00 pm. 

4. DISCUSSION 
The results of this study indicate that a reactive 

construction noise classification system can be 

implemented using waveform audio and machine learning 

based detection. Assuming that construction noise is 

acoustically distinct from other building/city/occupant-

generated sounds, and that 10-second audio segments are 

an appropriate interval for proper classification, this 

application could be used in similar settings where 

construction noise is a major complaint for building 

occupants.  

An overall accuracy of 82% between precision and recall 

statistics for the classification model is promising, 

considering the relatively small training and testing sets 

and that the manually labeled data was labeled by humans 

with only audio data, without the use of supplementary 

video validation data. This is especially impressive 

considering that 10 seconds is a relatively long interval 

for construction noise identification, since many 

construction noises often occur in short bursts of less than 

a second; model precision would likely improve with a 

larger data set of shorter interval audio chunks. 

Additionally, the use of manually labeled data introduces 

subjectivity to the labeler which could have contributed to 

the 18% of inaccurate data.  

Nonetheless, the model yields promising results for 

identifying construction noises. Using a random forest 

classifier is useful considering the variable nature of 

construction noise. Different sounds, including alarms, 

heavy machinery, and impacts, vary in their acoustic 

parameters. A forest classifier allows the model to 

consider multiple decision trees, all without placing undue 

weight on a specific sound or trend in the data. In our 

case, the model was able to classify a variety of different 

construction noises emitting from the VERVE 

construction site. 

In part, this is also due to the audio classification provided 

by Librosa that pairs with the random forest model. Using 

Librosa, we were able to extract specific acoustic features 

from the waveform audio that are characteristic of the 

specific type of construction that is occurring. These 

features provide a qualitative representation of each audio 

chunk, allowing the model to learn the relationships with 

their classification label. Figure 4 below displays a mel 

spectrogram illustrating these acoustic patterns and their 

classification label.

  

Figure 4. Mel-spectrogram representations of sample audio samples, comparing nighttime ambience (1) to 

several construction noise types (0), including a vehicle reverse alarm, hammer impacts, and emergency siren 

beeps.f 
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Figure 5. Same histogram as shown in Figure 3, grouped by the hour, overlaid with a plot showing the tuned suggestions for 

turning off/on the white noise actuator system. The suggestions demonstrate the use of the EMA hyperparameter and 

hysteresis logic to limit off/on cycles of the actuator, essential for occupant comfort. 

The nighttime spectrogram, labeled 1 by the model, 

shows no variability over the 10-second chunk with a low 

general amplitude compared to other spectrograms. The 

other three spectrograms were all labeled as construction 

by the model, representing a reverse alarm, a hammer, and 

an emergency siren upon listening to the specific audio 

chunks. Visual inspection of these spectrograms shows 

unique patterns related to the construction noise they are 

attributed to. All three exhibit low-amplitude, high-

frequency repetitive noises at around 2000 Hz; conditions 

that seem to be evident in most construction events, as 

they originate from outside the building. Using the audio 

features extracted by Librosa, the model assigned each 

chunk a probability to designate its classification. The 

individual model-based probability and smoothed 

context-dependent probability are presented in Table 3 

below.  

Table 3. Model-based probability to contain construction  

Sound Model prob. Smoothed prob. 

Nighttime 0.005 0.0615 

Reverse Alarm 0.94 0.799 

Hammer 0.88 0.797 

Emergency Siren 0.86 0.818 

Despite all three construction sounds having a generally 

high model-based probability, the smoothed probability 

shows a lower value, taking into account instances of no-

construction in time proximity to the selected audio 

chunk. 

Utilizing the smoothed probabilities processed by the 

EMA and hysteresis methodology, Figure 5 displays the 

suggestions for the actuator settings as either "ON" or 

"OFF". It is evident that the suggested actuator settings at 

the various time points directly correlate with the increase 

in construction noise datapoints in any particular hour. In 

addition, though the raw labels for the data points, as 

predicted by the model, were shifting continuously 

between 1s and 0s, the EMA and hysteresis method 

greatly reduced the number of transitions from ON → 

OFF or OFF → ON, which was one of the goals of the 

actuator system. 

This work was completed under the assumption that a 

consistent white-noise is a preferable alternative to 

infrequent construction noises by the occupant. The 

output of the model indicated that the white noise 

generator would run essentially non-stop during the 

workday and only turn off during lunchtime or after the 

construction workers leave for the day. Balancing 

between responsiveness and stability for the actuator and 

the psychological effect that differing actuator 

sensitivities could have on the occupant is an important 

consideration that has not been accounted for in this study 

but could be an avenue for future work. 

Overall, this study demonstrated the feasibility of using 

machine learning audio classification to support a white 

noise generator as a means to mitigate an acoustic 

environment polluted by construction noise There were 

clear limitations to dataset size and labeling assumptions, 

which can be easily expanded on for future work. 

Nonetheless, the findings suggest that construction noise 

can be autonomously identified using machine learning, 

which serves as motivation for the future development of 

a fully automated dynamic noise masking system.  

4.1. Future Work 
More work is needed to apply this system to real-world 

applications. Expanding the dataset to include a more 

diverse set of audio recordings from different rooms in 
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Olsson Hall would allow the model to capture a broader 

spectrum of acoustic conditions. The current dataset only 

covers one space from a single 24-hour period in Olsson 

241, but this does not fully capture the range of intensities 

and frequencies that are heard throughout the building. 

Future work could also prioritize the collection of audio 

from outside the building concurrently with indoor 

recordings, enabling more accurate labeling by reducing 

acoustic indoor interference that may lead to 

misclassifications. Additionally, future refinement of the 

model could include sliding frame windows instead of 10-

second audio chunks for more accuracy, or different 

actuation parameters optimized to prevent frequent 

cycles, while maintaining acoustic comfort.  

The ultimate goal of this system would be to process 

audio in real-time. Currently, all processing is reactive, 

analyzing pre-recorded audio. In the future, the model 

could process real-time audio recordings so that it can 

predict construction bursts as they occur and activate the 

white noise generator autonomously. Evaluating the 

effectiveness of a white noise generator was beyond the 

scope of this project but should be immediately tested 

with the implementation of real time processing, and 

tested for occupant perception.  

5. CONCLUSION 
This study demonstrates that machine learning audio 

classification, when paired with white noise actuation, 

may serve as a viable approach for mitigating the effects 

of acoustic disturbances generated from a construction 

site. Through waveform audio data collection and manual 

labeling, a random forest classifier was trained on features 

extracted from Librosa, achieving an accuracy of 82% in 

construction noise identification. The actuation model 

correctly signaled the white noise generator to turn on and 

stay on during times of peak construction activity, and 

correctly signaled the generator to turn off and stay off 

during periods of site inactivity. These findings suggest 

that a reactive system that distinguishes between 

construction noises and non-construction noises and acts 

based on this classification is feasible, with room for 

expansion. 

5.1. Acknowledgements 
We would like to thank Saja Alnusair for her expertise 

and guidance throughout this study, which included 

providing recording materials and contributing to model 

development. Additionally, we would like to thank Brad 

Campbell for providing access to his office for data 

collection. 

REFERENCES 

[1] Bailey, L. (2025, October 6). University construction wraps up 
summer projects, what now?. University construction wraps up 
summer projects, what now? - The Cavalier Daily - University of 
Virginia’s Student Newspaper.  

[2] Cochary, J. (2021, May 15). Common noise levels. Noise 
Awareness Day.  

[3] Rimskaya-Korsakova, L. K., Pyatakov, P. A., & Shulyapov, S. A. 
(2022). Evaluations of the Annoyance Effects of Noise. Acoustical 

Physics, 68(5), 502–512. 

[4] Wu, Z.F. and Zhao, X.Q. (2024) Reducing construction noise: 
Sound masking effect on soundscape dominated by construction 
noise - International Journal of Environmental Science and 

Technology, SpringerLink, 22, 797-832. 

[5] Jafari, M. J., Khosrowabadi, R., Khodakarim, S., & Mohammadian, 
F. (2019). The Effect of Noise Exposure on Cognitive Performance 
and Brain Activity Patterns. Open access Macedonian journal of 

medical sciences, 7(17), 2924–2931. 

[6] Akbari J, Dehghan H, Azmoon H, Forouharmajd F. (2013). 
Relationship between lighting and noise levels and productivity of 

the occupants in automotive assembly industry. Journal of 
Environmental and Public Health. 

[7] Ichwan, N.A.A., Saleh, L.M., Thamrin, Y., Wahyu, A., Syafar, M., 
Mallongi, A. (2024). The Effect of Noise and Work Fatigue on 

Work Productivity: Work Stress as a Mediator Among Airport 
Workers. 

[8] Cho, S., Lim, D. Y., Kim, S., Kim, H., Kang, W., & Park, W. J. 
(2023). Association between Occupational Noise Exposure and 

Insomnia among Night-Shift Production Workers: A 4-Year 
Follow-up Study. Noise & health, 25(118), 135–142. 
https://doi.org/10.4103/nah.nah_15_23 

 

[9] Lim, H. M., Kang, W., Park, W. J., Jang, K. H., Ann, J. S., & 
Moon, J. D. (2017). Insomnia and hearing impairment among 

occupational noise exposed male workers. Annals of occupational 
and environmental medicine, 29, 36. 

[10] Huang, C.-Y. et al. (2024) Effect of occupational noise on 
employee health: A longitudinal study, Noise & health, 26(123), 

514-522. 

[11] Kwon, N., Park, M., Lee, H.S., Ahn, J., Shin, M. (2016, Jan 27). 
Construction Noise Management Using Active Noise Control 
Techniques. 

[12 World Health Organization. (1999). Guidelines for community 
noise. Geneva, Switzerland: World Health Organization.  

 

 

 
 

 

https://www.who.int/publications/i/item/a68672?utm_source=chatgpt.com

