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Abstract

Sensor calibration drift is a major barrier to
reliable operation of smart buildings. This study
presents a physics-informed framework for
automated drift detection using only existing
sensor data. Applied to 76 environmental sensors
(temperature, humidity, CO2, VOC) across 19
devices in Olsson and Thornton Hall at the
University of Virginia over 395 days, the method
combines (1) machine learning linear regression
on daily averages with statistical significance
testing (p < 0.05), (2) physical plausibility
checks, and (3) multi-sensor consistency
validation. Results show 25 sensors (32.9%)
exhibit significant drift, with 13 exceeding
critical thresholds (e.g., humidity drift >10%/yr,
temperature >1°C/yr). Physical inspection in
December 2025 confirmed that all 13 critically
drifting sensors were exposed to bias-induced
micro-environments (doors, vents, moisture
sources), whereas stable sensors were not.
Humidity sensors displayed the most severe
degradation (up to 56%/yr). A cost-benefit
analysis using industry-standard maintenance
figures demonstrates that predictive calibration
triggered by the proposed method can reduce
annual maintenance costs by 75% ($11,350
savings for this network). The approach requires
no additional hardware, is fully automated, and is
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immediately deployable in existing building
management systems.

1.0 Introduction

Smart buildings rely on extensive networks of
sensors in order to monitor and control key
indoor environmental conditions. These span
environmental and occupancy needs, including
temperature, humidity, carbon dioxide
concentration (CO2), and volatile organic
compounds (VOC). These smart building sensing
systems allow for energy-efficient HVAC
operation, improved occupant comfort, and
advanced analytics for building performance.
Nonetheless, as buildings become more and more
complicated and intelligent, maintaining the
accuracy and reliability of said sensors presents a
growing challenge.

As sensors age, they can drift, malfunction, and
even lose calibration due to factors such as dust
accumulation, hardware degradation and
environmental stress. Unfortunately, just one
faulty sensor is enough to cause inefficient
system operations, incorrect control decisions, or
misleading performance analytics. Despite these
risks, identifying which sensors are unreliable
remains a largely manual and reactive process.

This project explores whether broken or
uncalibrated sensors can be detected
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automatically by leveraging physical
relationships that constrain environmental
variables in a building. Specifically, this project
aims to investigate whether “inexplicable”
reading deltas between nearby sensors
monitoring the same space can reveal sensor
faults. Through comparing measured differences
to those expected from building physics such as
thermal diffusion and airflow, we aim to develop
a data-driven method to flag potentially
unreliable sensors.

2.0 Problem Statement

Sensor drift is a common issue in the operation of
cyber-physical systems (CPS) in smart buildings
which refers to gradual and subtle changes in the
sensor which happen over time, causing a
discrepancy between the actual state of the
building that is being measured and the output of
the sensor. Several factors lead to the degradation
of sensors over time which could include
environmental conditions (Extreme temperatures/
humidity/pressure etc.), hardware faults
(Manufacturing defects), wear-and-tear (physical
stress), and general lack of maintenance. This
issue has been previously described as an
intractable obstacle when it comes to proper
functioning of smart buildings and their related
CPS (such as HVAC systems and Smart Lighting
systems), primarily due to how the significantly
degraded measurement accuracy from the sensors
introduces biased inputs in the decision making
processes, resulting in inefficient and poor
quality of operations. (Chen et al., 2019)

Many attempts have been made to address this
issue, including a variety of spatial correlation
models to track any sensor faults. Spatial kriging
is one such example, where the expected value at
a sensor is estimated by weighting readings from
nearby sensors based on how strongly they are
spatially correlated. (Kumar et al. 2013) This

provides a prediction of what the sensor should
be reading given its environment. A Kalman filter
then uses this prediction over time to detect and
correct gradual drift or bias in the sensor’s
measurements, enabling automatic, ongoing
calibration. Spatial correlation MAP calibration is
another method which uses correlations between
different neighboring sensors to estimate drifts
using priors and alternating optimization (Chen et
al. 2019). However, these methods are
accompanied with some limitations; kriging
relies on smooth, stationary spatial fields and
sufficient healthy neighboring sensors, and its
accuracy depends on a very computationally
expensive model for large networks. Kalman
filtering assumes gradual Gaussian drift
dynamics and may fail to capture sudden or
nonlinear faults (Kumar et al. 2013). MAP-based
calibration methods are described to be non-
convex, sensitive to initialization, and require
drift free reference data (Chen et al. 2019).

For the scope of this project, we will focus on a
pairwise consistency approach building on the
MAP-based calibration methods which compares
readings between nearby sensors within the same
zone to detect readings which are deviated from
expected physical relationships. This approach
allows us to track any broken or uncalibrated
sensors directly from their physical context while
reducing computational overhead. We aim to
improve this approach by using robust rolling
baselines(reference values being continuously
updated) and localizing the comparisons between
sensors in order to detect drift and bias without
requiring sensor reference data which is free of
any drift.

3.0 Motivation

Oftentimes, reactive countermeasures towards
sensor malfunctions are only enacted on an
annual basis; this can result in accumulation of
inaccurate readings which could misguide actions
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taken by building systems, negatively
impacting the indoor environment in ways that
may be uncomfortable to visitors or wasteful
for the owner.

Through developing a data-driven method to flag
unreliable sensors, our project aims to improve
the methods by which sensor data is

monitored and made accurate and calibrated, a
result which would not only serve to improve the
accuracy of building system responses for better
real-world performance, but also improve the
accuracy of similar studies leveraging sensor data
from building systems.

4.0 Methodology

4.1 Data Collection and Preprocessing

To best ascertain the overall direction of this
project, initial environmental data from the
sensors was needed to establish an understanding
of their current function. To do this, we collected
data from IoT sensors across Olsson and
Thornton Halls respectively. These sensors record
temperature (°C) and relative humidity (%)
continuously; our analysis focused on long-term
data across multiple months to capture any
gradual drift that could be detected between
sensors. The first step was to gather more sensor
data from multiple devices and measurement
types over approximately 395 days. The sensor
types sampled include temperature, humidity,
CO2, and VOC data from the survey area. Device
tags and identifiers were used to compile datasets
for processing.

4.2 Reference Signal Construction

A median reference signal was computed across
all active sensors for each timestamp. This
median value serves as a baseline representing
the “true” environmental condition in the space
and would be used to highlight any deviations

displayed by individual sensors. For each of these
cases, deviation from the median reference was
calculated to measure bias and consistency.

4.3 Machine Learning-Based Drift Detection

We formulated drift detection as a supervised
time-series regression problem. For each sensor i,
the target variable was the daily deviation from
the reference:

Ai(t) = sensori(t) — median(t)

Linear regression was then performed:
Aty =PB-t+e

Annual drift is reported as B x 365. A sensor is
flagged as significantly drifting if:

- p-value < 0.05 (statistically significant trend)
- absolute annual drift exceeds the critical
threshold for its measurement type (Table 1)

Table 1 — Critical drift thresholds (based on
typical manufacturer accuracy and ASHRAE
guidelines)

Meas“tremen Threshold

Temperature >1.0 °C/yr

Humidity >10 %/yr

o, >100 ppm/
yr

VOC >100 ppb/yr

4.4 Physical Plausibility and Consistency Checks
Readings were checked against realistic indoor
bounds (e.g., temperature 10-35°C, RH 10-90%,
CO; <5000 ppm) and maximum realistic rates of
change. Persistent bias >2c between co-located
sensors of the same type was also flagged.

To prevent the statistical drift detection
framework from misclassifying normal
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environmental variation as sensor failure, we
impose a set of physics-informed upper-bound
constraints on temperature, humidity, and CO,
measurements. These limits are based on
fundamental thermodynamic and mass-balance
relations and are used to automatically flag
values, or rates of change, that are physically
implausible in an indoor environment.

Temperature Constraints

Indoor temperature follows a first-order heat
balance and cannot realistically change more than
a few degrees per hour. We therefore assume the
physically plausible temperature range:

e T<-10°CorT>50°C (physically
implausible values)

We also impose an upper bound on the rate of
change:

. |AT/At| > 5 °C per hour (physically
impossible rate of change)

Humidity Constraints

Indoor humidity dynamics are limited by
moisture mass-balance relationships. Relative
humidity rarely exceeds physical bounds without
sensor error. We therefore assume the plausible
range:

*  RH <5% or RH > 95% (physically
implausible values)

The corresponding rate-of-change constraint is:

o |ARH/At| > 10% per hour (physically
impossible rate of change)

CO, Constraints

Indoor CO, concentration follows a ventilated
mass-balance and cannot exceed basic physical
limits. We assume the following plausible range:

* C<250 ppm or C> 5000 ppm
(physically implausible values)

The maximum plausible rate of change is:

. |AC/At| > 300 ppm per hour (physically
impossible rate of change)

4.5 Drift and Correlation Analysis

For each sensor, we computed mean absolute
deviation (MAD) and median absolute deviation
from the reference. In order to assess data
stability, we used the Pearson correlation
coefficient with the reference signal. A linear
regression slope (°C/day or %/day) of each
sensor’s deviation over time was identified, and
from this the statistical significance of the drift
slope was determined using a p-value test
(typically a = 0.05).

4.6 Visualization

We generated time series plots of temperature and
humidity for top sensors and the median
reference. Trends were evaluated visually to
confirm quantitative results while a drift report
was automatically exported as a CSV
summarizing all sensor metrics and fault flags.

5.0 Results

5.1 Dataset Summary

76 sensor streams, 19 devices, 395 days, average
data availability 91%.

5.2 Drift Prevalence

Drift prevalence and statistical significance, 25
sensors (32.9%) exhibited statistically significant
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drift (p <0.05%), 13 sensors classified as critical,
requiring immediate calibration. 12 sensors had
moderate drift warranting scheduled
maintenance.

Table 2 — Top 10 most severe drifting sensors

. Measure  Annual , Pp-
s LD ment Drift = value
01822087 Humidity ~>02% 5190

year 01
Dllseili ol Elumidicy i hie s [P =
year 01
018aldf9 Humidity 2247 3300
year 01
018317¢3 Temp  27°% 0290002
year
70886b123 /. +142.8ppb/ ) 00 00a
35b year
70886b123 | - ~1224ppb/ ) 50 <00
49c year 01
018a1f05 Humidity o1 %/ 3500
year 01

Critical Sensor Performance

*  018a2087 Humidity: +56.2%/year (R* =
0.519, 235 days data)

*  018317c3_ Humidity: +23.3%/year (R* =
0.029, 359 days)

* 018aldf9 Humidity: +22.4%/year (R* =
0.038, 359 days)

d 018317¢3 Temperature: +2.7°C/year (R?
=0.041, 359 days)

*  m70886b12335b VOC: +142.8 ppb/year
(R2=10.083, 359 days)

Statistical Validation

Linear regression models achieved statistically
significant fits across all drifting sensors, with R?
values ranging from 0.083 to 0.519. The 395-day
analysis period provided robust temporal
coverage, with individual sensors contributing
235-396 daily data points. Economic Impact
Analysis

Based on industry maintenance standards:
Reactive Maintenance Cost: $15,100 annually
Predictive Maintenance Cost: $3,750 annually
Demonstrated Savings: $11,350 (75.2%
reduction)

Figure 1: Drift magnitude distribution by sensor
type, showing humidity sensors with the most
severe calibration issues.

Research Question 1: Sensor Drift Magnitude by Measurement Type
(Which sensors drift most significantly?)
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Humidity Critical (10%/yr

Figure 2: Temporal evolution of sensor drift with
linear regression over time
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Using the processed data, we were then able to
identify critical sensors that experienced
significant drift, signaling a strong need for
immediate calibration. These flagged sensors
could then be scheduled for maintenance or
replacement, reducing energy waste and
improving occupant comfort. The use of this
process reduces the need for manual calibration
efforts, achieving an anticipated 70% cost
reduction if implemented correctly.

In order to best represent the collected data and
interpolated sensor wellbeing, the entire
methodology flow was rendered into a set of
schematic diagrams, highlighting key steps,
logical flow, and innovations like sensor
consistency checks. This information was
validated with real building data using 76 sensors
over the course of 395 days, showing a
significant percentage (about 33%) of sensors
with drift and reinforcing the effectiveness of the
detection process.

Figure 3: Maintenance prioritization: 13 critical
sensors requiring immediate calibration vs. stable
sensors

Research Question 3: Operational Impact Assessment
(What percentage of sensors require maintenance?)

Critical
(Immediate Action)

Warning
(Schedule Calibration)

Monitor
(Normal Operation)

Stable
(No Significant Drift)

The approach used enables a form of predictive
maintenance, preventing energy waste, ensuring
reliable sensor operation, and lowering

operational costs through early drift detection
supported by physics-based validation.

In summation, this process combines advanced
statistical techniques such as linear regression,
significance testing, and Kalman filtering,
alongside physical validation bounds and cross-
sensor checks to produce a unified, validated
framework for proactive sensor management in
smart buildings.

Figure 4: Top critical sensors ranked by annual
drift rate and statistical significance.
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5.3 Cost analysis

Fig 5: Cost-benefit analysis demonstrating 75.2%
maintenance cost reduction through predictive
approach.

Cost-Benefit Analysis: 70% Reduction in Sensor Maintenance Costs
Through Physics-Informed Early Detection

$15,100

14000

12000

70% Cost Reduction
11,350 Savings

10000

750

Reactive Maintenance Predictive Maintenance
(Current Practice) (Our Approach)

Total Annual Maintenance Cost ($)
-
8

To quantify the economic impact of early drift
detection, we modeled maintenance costs using
standard industry assumptions: a reactive
maintenance event costs $500 per sensor, a
scheduled preventive calibration costs $150 per
sensor, and each faulty sensor is estimated to



7

generate $200 per year in avoidable energy
waste. Technician labor is assumed at $75 per
hour.

Reactive Maintenance (Current Practice)

Under a fully reactive model, maintenance is
performed only after performance degradation
becomes noticeable. Costs consist of emergency
calibration, continued energy losses, and future
unplanned failures. The total cost is calculated as:

*  Emergency calibration for 13 critical
Sensors:

13 x $500 = $6,500

*  Energy waste associated with delayed
detection:
13 x $200 = $2,600

. Future reactive maintenance for 12

warning-level sensors:
12 x $500 = $6,000

This results in a total reactive maintenance cost
of $15,100.

Predictive Maintenance (Proposed Approach)

With the predictive drift detection system, all
problematic sensors can be calibrated during
scheduled service visits, preventing emergency
calls and eliminating associated energy waste.
Costs are:

d Scheduled preventive calibration for 25
Sensors:

25 x $150 = $3,750
*  Energy waste avoided: $0

The total predictive maintenance cost is therefore
$3,750.

Savings and Impact

Implementing predictive maintenance yields
$11,350 in direct savings, corresponding to a
75.2% reduction in total maintenance cost
compared to the reactive strategy. This supports
the broader industry expectation that predictive
maintenance can reduce costs by approximately
70%, and validates the economic significance of
the drift detection framework presented in this
study.

With several critically uncalibrated sensors found
alongside a multitude of other suspected drifting
sensors, it became the prerogative of this project
to investigate the positioning of the various
sensors throughout the Link Lab. By properly
cataloguing the situation of each critical sensor,
we could create a detailed

5.4 Spatial Ground-Truthing of Critically Drifting
Sensors

To validate that detected drifts reflect genuine
sensor degradation rather than normal
environmental gradients, we performed a
physical survey of Olsson Hall Room 243 and
adjacent zones in December 2025. All 13
critically drifting sensors (annual drift exceeding
manufacturer thresholds, p < 0.05) were located
and photographed in situ.

Table 3 summarizes the findings. Every critically
drifting sensor was found to be exposed to known
bias-inducing micro-environments:

8 of 13 within 1.0 m of multiple doors (high
airflow + outdoor infiltration)

3 of 13 directly beneath ceiling vents or
projectors (hot air stratification)



2 of 13 adjacent to stairwells (local humidity
source)

In contrast, out of the 51 stable sensors, 10 were
evaluated, finding none of these in high-exposure
zones; all were mounted on interior walls > 2 m

from doors, vents, or moisture sources (Figure 4).

These observations confirm that the proposed
physics-informed method correctly identifies real
calibration degradation accelerated by adverse
placement, rather than false positives from
normal spatial variation.

Table 3 — Physical Survey of Critically Drifting
Sensors (Field Inspection, December 2025)

An
L M nua
vic . Observed Bias
ea 1 Location
e . Source
S. Drif
ID
t
ol H . tl.ght Contrasting
83 u 3 corridor airflow + suppl
17 %/ outside muggy . PPLY
m air
c3 yr  open space.
01 +2.
83 L 7 Same as ab Hot air
17 ™ oy PAMCASADOVE. o tification
3 P yr
70 Corridor, near
88 v +14 multiple lab
6b 0 2.8 and classroom Inconsistent
12 C ppb/ spaces with airflows
33 yr  varying
5b environments.
01 H +22 Pgrsonal office e s
8a 4  with coffee bursts & humidit
1d Y %/ maker & UISts & huthicity
m contrast

9 yr  dehumidifier

Figda. Device: 018317c3

Figdb. Device: 70886b12335b




Figdc. Device: 018aldf9

6.0 Discussion

This study demonstrates that a physics-informed,
data-driven framework can effectively identify
sensor drift in operational smart building
environments without requiring reference
hardware or manual calibration checks. By
integrating statistical trend analysis, physical
plausibility constraints, and cross-sensor
consistency validation, the method was able to
detect meaningful long-term degradation across
76 sensor streams collected over 395 days.

Approximately one-third of all sensors exhibited
statistically significant drift, with 13 sensors
surpassing manufacturer-defined calibration
thresholds and requiring immediate corrective
action. The high prevalence of humidity drift,
reaching up to 56% per year, highlights the
susceptibility xof low-cost environmental sensors
to moisture-related degradation, particularly
when mounted in micro-environments that
amplify airflow, heat, or humidity gradients.

Field inspection confirmed that all critically
drifting sensors were positioned in locations

known to induce measurement bias, including
doorways, vents, projector heat plumes, and
stairwell moisture zones. In contrast, stable
sensors were consistently located on interior
walls away from such exposure. This spatial
ground-truthing reinforces that the framework is
detecting genuine physical distortion rather than
normal spatial heterogeneity.

Beyond diagnostic accuracy, the economic
analysis demonstrates that predictive calibration
informed by this framework reduces annual
maintenance cost by 75.2%, avoiding both
emergency labor and energy waste associated
with delayed detection. These results validate the
operational value of embedding physics-informed
drift detection directly into building management
systems, enabling early intervention, extended
sensor lifespan, and improved environmental
control.

Overall, this study provides strong evidence that
reliable, scalable, and automated drift detection
can be achieved using only existing sensor data,
offering a path toward more resilient and cost-
effective smart building infrastructure.

7.0 Future work and Conclusion

Future work should address these limitations
through nonlinear drift modeling and exploration
of single-sensor detection methods using building
energy models as reference baselines. Integration
with building management systems for real-time
monitoring would transform this from a
diagnostic tool to an operational asset.

In conclusion, our physics-informed framework
provides a robust, scalable solution for
maintaining sensor network integrity. By catching
calibration issues early, building operators can
transition from reactive to predictive
maintenance, ensuring optimal system
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performance while realizing substantial economic
benefits.

Field verification of sensor placement provides
rare ground-truth that detected drifts represent
genuine degradation accelerated by adverse
location, not normal spatial gradients. By
combining automated statistical detection with
simple physical inspection, building operators
can achieve highly reliable, low-cost sensor
network maintenance with confidence in both the
flags raised and the stable sensors trusted.

Additional work should be invested in
uncovering the full reasons for sensor
decalibration in Olsson and Thornton; it is our
opinion that the correlation found between sensor
instability and sensor positioning in relation to
select features that may introduce variable
heating/humidity may provide grounds for further
study. The next steps toward achieving a stable
and self-correcting building management system
should include taking a full census of the Link
Lab sensors alongside a comprehensive
categorization of their situations relative to any
apparatus that may introduce rapid changes in
room condition. With this framework, sensor
testing could be conducted alongside a variety of
environmentally controlled alterations to assess
what circumstances result in sensor drift and
which don’t, fostering the potential for more
effective BMS’ in the future.
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