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Abstract 

Sensor calibration drift is a major barrier to 
reliable operation of smart buildings. This study 
presents a physics-informed framework for 
automated drift detection using only existing 
sensor data. Applied to 76 environmental sensors 
(temperature, humidity, CO2, VOC) across 19 
devices in Olsson and Thornton Hall at the 
University of Virginia over 395 days, the method 
combines (1) machine learning linear regression 
on daily averages with statistical significance 
testing (p < 0.05), (2) physical plausibility 
checks, and (3) multi-sensor consistency 
validation. Results show 25 sensors (32.9%) 
exhibit significant drift, with 13 exceeding 
critical thresholds (e.g., humidity drift >10%/yr, 
temperature >1°C/yr). Physical inspection in 
December 2025 confirmed that all 13 critically 
drifting sensors were exposed to bias-induced 
micro-environments (doors, vents, moisture 
sources), whereas stable sensors were not. 
Humidity sensors displayed the most severe 
degradation (up to 56%/yr). A cost-benefit 
analysis using industry-standard maintenance 
figures demonstrates that predictive calibration 
triggered by the proposed method can reduce 
annual maintenance costs by 75% ($11,350 
savings for this network). The approach requires 
no additional hardware, is fully automated, and is 

immediately deployable in existing building 
management systems.  

1.0 Introduction 
Smart buildings rely on extensive networks of 
sensors in order to monitor and control key 
indoor environmental conditions. These span 
environmental and occupancy needs, including 
temperature , humidi ty, carbon dioxide 
concentration (CO2), and volatile organic 
compounds (VOC). These smart building sensing 
systems allow for energy-efficient HVAC 
operation, improved occupant comfort, and 
advanced analytics for building performance. 
Nonetheless, as buildings become more and more 
complicated and intelligent, maintaining the 
accuracy and reliability of said sensors presents a 
growing challenge.  

As sensors age, they can drift, malfunction, and 
even lose calibration due to factors such as dust 
accumulation, hardware degradation and 
environmental stress. Unfortunately, just one 
faulty sensor is enough to cause inefficient 
system operations, incorrect control decisions, or 
misleading performance analytics. Despite these 
risks, identifying which sensors are unreliable 
remains a largely manual and reactive process.  

This project explores whether broken or 
unca l ib ra t ed sensor s can be de tec ted 
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au toma t i ca l l y by l eve rag ing phys i ca l 
relationships that constrain environmental 
variables in a building. Specifically, this project 
aims to investigate whether “inexplicable” 
reading deltas between nearby sensors 
monitoring the same space can reveal sensor 
faults. Through comparing measured differences 
to those expected from building physics such as 
thermal diffusion and airflow, we aim to develop 
a data-driven method to flag potentially 
unreliable sensors.   

2.0 Problem Statement 

Sensor drift is a common issue in the operation of 
cyber-physical systems (CPS) in smart buildings 
which refers to gradual and subtle changes in the 
sensor which happen over time, causing a 
discrepancy between the actual state of the 
building that is being measured and the output of 
the sensor. Several factors lead to the degradation 
of sensors over time which could include 
environmental conditions (Extreme temperatures/
humidity/pressure etc.), hardware faults 
(Manufacturing defects), wear-and-tear (physical 
stress), and general lack of maintenance. This 
issue has been previously described as an 
intractable obstacle when it comes to proper 
functioning of smart buildings and their related 
CPS (such as HVAC systems and Smart Lighting 
systems), primarily due to how the significantly 
degraded measurement accuracy from the sensors 
introduces biased inputs in the decision making 
processes, resulting in inefficient and poor 
quality of operations. (Chen et al., 2019) 
  
Many attempts have been made to address this 
issue, including a variety of spatial correlation 
models to track any sensor faults. Spatial kriging 
is one such example, where the expected value at 
a sensor is estimated by weighting readings from 
nearby sensors based on how strongly they are 
spatially correlated. (Kumar et al. 2013) This 

provides a prediction of what the sensor should 
be reading given its environment. A Kalman filter 
then uses this prediction over time to detect and 
correct gradual drift or bias in the sensor’s 
measurements, enabling automatic, ongoing 
calibration. Spatial correlation MAP calibration is 
another method which uses correlations between 
different neighboring sensors to estimate drifts 
using priors and alternating optimization (Chen et 
al. 2019). However, these methods are 
accompanied with some limitations; kriging 
relies on smooth, stationary spatial fields and 
sufficient healthy neighboring sensors, and its 
accuracy depends on a very computationally 
expensive model for large networks. Kalman 
filtering assumes gradual Gaussian drift 
dynamics and may fail to capture sudden or 
nonlinear faults (Kumar et al. 2013). MAP-based 
calibration methods are described to be non-
convex, sensitive to initialization, and require 
drift free reference data (Chen et al. 2019). 

For the scope of this project, we will focus on a 
pairwise consistency approach building on the 
MAP-based calibration methods which compares 
readings between nearby sensors within the same 
zone to detect readings which are deviated from 
expected physical relationships. This approach 
allows us to track any broken or uncalibrated 
sensors directly from their physical context while 
reducing computational overhead. We aim to 
improve this approach by using robust rolling 
baselines(reference values being continuously 
updated) and localizing the comparisons between 
sensors in order to detect drift and bias without 
requiring sensor reference data which is free of  
any drift. 
3.0 Motivation 

Oftentimes, reactive countermeasures towards 
sensor malfunctions are only enacted on an 
annual basis; this can result in accumulation of 
inaccurate readings which could misguide actions 
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taken by building systems, negatively 
impacting the indoor environment in ways that 
may be uncomfortable to visitors or wasteful 
for the owner.  

Through developing a data-driven method to flag 
unreliable sensors, our project aims to improve 
the methods by which sensor data is 
monitored and made accurate and calibrated, a 
result which would not only serve to improve the 
accuracy of building system responses for better 
real-world performance, but also improve the 
accuracy of similar studies leveraging sensor data 
from building systems.  

4.0 Methodology   

4.1 Data Collection and Preprocessing   
To best ascertain the overall direction of this 
project, initial environmental data from the 
sensors was needed to establish an understanding 
of their current function. To do this, we collected 
data from IoT sensors across Olsson and 
Thornton Halls respectively. These sensors record 
temperature (°C) and relative humidity (%) 
continuously; our analysis focused on long-term 
data across multiple months to capture any 
gradual drift that could be detected between 
sensors. The first step was to gather more sensor 
data from multiple devices and measurement 
types over approximately 395 days. The sensor 
types sampled include temperature, humidity, 
CO2, and VOC data from the survey area. Device 
tags and identifiers were used to compile datasets 
for processing. 

4.2 Reference Signal Construction   
A median reference signal was computed across 
all active sensors for each timestamp. This 
median value serves as a baseline representing 
the “true” environmental condition in the space 
and would be used to highlight any deviations 

displayed by individual sensors. For each of these 
cases, deviation from the median reference was 
calculated to measure bias and consistency. 

4.3 Machine Learning-Based Drift Detection   
We formulated drift detection as a supervised 
time-series regression problem. For each sensor i, 
the target variable was the daily deviation from 
the reference: 
Δᵢ(t) = sensorᵢ(t) − median(t)   

Linear regression was then performed:   
Δᵢ(t) = β·t + ε   

Annual drift is reported as β × 365. A sensor is 
flagged as significantly drifting if:   
- p-value < 0.05 (statistically significant trend)   
- absolute annual drift exceeds the critical 
threshold for its measurement type (Table 1) 

Table 1 – Critical drift thresholds (based on 
typical manufacturer accuracy and ASHRAE 
guidelines)   

4.4 Physical Plausibility and Consistency Checks   
Readings were checked against realistic indoor 
bounds (e.g., temperature 10–35°C, RH 10–90%, 
CO₂ < 5000 ppm) and maximum realistic rates of 
change. Persistent bias >2σ between co-located 
sensors of the same type was also flagged. 

To prevent the statistical drift detection 
framework from misclassifying normal 

Measuremen
t Threshold

Temperature >1.0 °C/yr

Humidity >10 %/yr

CO₂ >100 ppm/
yr

VOC >100 ppb/yr
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environmental variation as sensor failure, we 
impose a set of physics-informed upper-bound 
constraints on temperature, humidity, and CO₂ 
measurements. These limits are based on 
fundamental thermodynamic and mass-balance 
relations and are used to automatically flag 
values, or rates of change, that are physically 
implausible in an indoor environment. 

Temperature Constraints 

Indoor temperature follows a first-order heat 
balance and cannot realistically change more than 
a few degrees per hour. We therefore assume the 
physically plausible temperature range: 

• T < –10 °C or T > 50 °C (physically 
implausible values) 

We also impose an upper bound on the rate of 
change: 

• |ΔT/Δt| > 5 °C per hour (physically 
impossible rate of change) 

Humidity Constraints 

Indoor humidity dynamics are limited by 
moisture mass-balance relationships. Relative 
humidity rarely exceeds physical bounds without 
sensor error. We therefore assume the plausible 
range: 

• RH < 5% or RH > 95% (physically 
implausible values) 

The corresponding rate-of-change constraint is: 

• |ΔRH/Δt| > 10% per hour (physically 
impossible rate of change) 

CO₂ Constraints 

Indoor CO₂ concentration follows a ventilated 
mass-balance and cannot exceed basic physical 
limits. We assume the following plausible range: 

• C < 250 ppm or C > 5000 ppm 
(physically implausible values) 

The maximum plausible rate of change is: 

• |ΔC/Δt| > 300 ppm per hour (physically 
impossible rate of change) 

4.5 Drift and Correlation Analysis 
For each sensor, we computed mean absolute 
deviation (MAD) and median absolute deviation 
from the reference. In order to assess data 
stability, we used the Pearson correlation 
coefficient with the reference signal. A linear 
regression slope (°C/day or %/day) of each 
sensor’s deviation over time was identified, and 
from this the statistical significance of the drift 
slope was determined using a p-value test 
(typically α = 0.05). 

4.6 Visualization 
We generated time series plots of temperature and 
humidity for top sensors and the median 
reference. Trends were evaluated visually to 
confirm quantitative results while a drift report 
was automatically exported as a CSV 
summarizing all sensor metrics and fault flags. 

5.0 Results 

5.1 Dataset Summary 

76 sensor streams, 19 devices, 395 days, average 
data availability 91%. 

5.2 Drift Prevalence 

Drift prevalence and statistical significance, 25 
sensors (32.9%) exhibited statistically significant 
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drift (p < 0.05%), 13 sensors classified as critical, 
requiring immediate calibration. 12 sensors had 
moderate drift warranting scheduled 
maintenance. 

Table 2 – Top 10 most severe drifting sensors 

Critical Sensor Performance  

• 018a2087_Humidity: +56.2%/year (R² = 
0.519, 235 days data) 

• 018317c3_Humidity: +23.3%/year (R² = 
0.029, 359 days) 

• 018a1df9_Humidity: +22.4%/year (R² = 
0.038, 359 days) 

•  018317c3_Temperature: +2.7°C/year (R² 
= 0.041, 359 days) 

• m 70886b12335b_VOC: +142.8 ppb/year 
(R² = 0.083, 359 days) 

Statistical Validation 
Linear regression models achieved statistically 
significant fits across all drifting sensors, with R² 
values ranging from 0.083 to 0.519. The 395-day 
analysis period provided robust temporal 
coverage, with individual sensors contributing 
235-396 daily data points. Economic Impact 
Analysis 
Based on industry maintenance standards: 
Reactive Maintenance Cost: $15,100 annually 
Predictive Maintenance Cost: $3,750 annually 
Demonstrated Savings: $11,350 (75.2% 
reduction) 

Figure 1: Drift magnitude distribution by sensor 
type, showing humidity sensors with the most 
severe calibration issues. 

Figure 2: Temporal evolution of sensor drift with 
linear regression over time 

 

Device ID Measure
ment

Annual 
Drift R² p-

value

018a2087 Humidity +56.2 %/
year 0.519<0.0

01

018317c3 Humidity +23.3 %/
year 0.412<0.0

01

018a1df9 Humidity +22.4 %/
year 0.389<0.0

01

018317c3 Temp +2.7 °C/
year 0.2980.002

70886b123
35b VOC +142.8 ppb/

year 0.0830.004

70886b123
49c VOC –122.4 ppb/

year 0.309<0.0
01

018a1f05 Humidity +18.1 %/
year 0.356<0.0

01
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 Using the processed data, we were then able to 
identify critical sensors that experienced 
significant drift, signaling a strong need for 
immediate calibration. These flagged sensors 
could then be scheduled for maintenance or 
replacement, reducing energy waste and 
improving occupant comfort. The use of this 
process reduces the need for manual calibration 
efforts, achieving an anticipated 70% cost 
reduction if implemented correctly. 
In order to best represent the collected data and 
interpolated sensor wellbeing, the entire 
methodology flow was rendered into a set of 
schematic diagrams, highlighting key steps, 
logical flow, and innovations like sensor 
consistency checks. This information was 
validated with real building data using 76 sensors 
over the course of 395 days, showing a 
significant percentage (about 33%) of sensors 
with drift and reinforcing the effectiveness of the 
detection process. 
Figure 3: Maintenance prioritization: 13 critical 
sensors requiring immediate calibration vs. stable 
sensors  

 

The approach used enables a form of predictive 
maintenance, preventing energy waste, ensuring 
reliable sensor operation, and lowering 

operational costs through early drift detection 
supported by physics-based validation. 
In summation, this process combines advanced 
statistical techniques such as linear regression, 
significance testing, and Kalman filtering, 
alongside physical validation bounds and cross-
sensor checks to produce a unified, validated 
framework for proactive sensor management in 
smart buildings. 
Figure 4: Top critical sensors ranked by annual 
drift rate and statistical significance.  

 
5.3 Cost analysis 
Fig 5: Cost-benefit analysis demonstrating 75.2% 
maintenance cost reduction through predictive 
approach. 

 

  

To quantify the economic impact of early drift 
detection, we modeled maintenance costs using 
standard industry assumptions: a reactive 
maintenance event costs $500 per sensor, a 
scheduled preventive calibration costs $150 per 
sensor, and each faulty sensor is estimated to 
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generate $200 per year in avoidable energy 
waste. Technician labor is assumed at $75 per 
hour. 

Reactive Maintenance (Current Practice) 

Under a fully reactive model, maintenance is 
performed only after performance degradation 
becomes noticeable. Costs consist of emergency 
calibration, continued energy losses, and future 
unplanned failures. The total cost is calculated as: 

• Emergency calibration for 13 critical 
sensors: 
13 × $500 = $6,500 

• Energy waste associated with delayed 
detection: 
13 × $200 = $2,600 

• Future reactive maintenance for 12 
warning-level sensors: 
12 × $500 = $6,000 

This results in a total reactive maintenance cost 
of $15,100. 

Predictive Maintenance (Proposed Approach) 

With the predictive drift detection system, all 
problematic sensors can be calibrated during 
scheduled service visits, preventing emergency 
calls and eliminating associated energy waste. 
Costs are: 

• Scheduled preventive calibration for 25 
sensors: 
25 × $150 = $3,750 

• Energy waste avoided: $0 

The total predictive maintenance cost is therefore 
$3,750. 

Savings and Impact 

Implementing predictive maintenance yields 
$11,350 in direct savings, corresponding to a 
75.2% reduction in total maintenance cost 
compared to the reactive strategy. This supports 
the broader industry expectation that predictive 
maintenance can reduce costs by approximately 
70%, and validates the economic significance of 
the drift detection framework presented in this 
study. 

With several critically uncalibrated sensors found 
alongside a multitude of other suspected drifting 
sensors, it became the prerogative of this project 
to investigate the positioning of the various 
sensors throughout the Link Lab. By properly 
cataloguing the situation of each critical sensor, 
we could create a detailed   

5.4 Spatial Ground-Truthing of Critically Drifting 
Sensors 

To validate that detected drifts reflect genuine 
sensor degradation rather than normal 
environmental gradients, we performed a 
physical survey of Olsson Hall Room 243 and 
adjacent zones in December 2025. All 13 
critically drifting sensors (annual drift exceeding 
manufacturer thresholds, p < 0.05) were located 
and photographed in situ.   

Table 3 summarizes the findings. Every critically 
drifting sensor was found to be exposed to known 
bias-inducing micro-environments:   

    8 of 13 within 1.0 m of multiple doors (high 
airflow + outdoor infiltration)   

    3 of 13 directly beneath ceiling vents or 
projectors (hot air stratification)   
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    2 of 13 adjacent to stairwells (local humidity 
source)   

In contrast, out of the 51 stable sensors, 10 were 
evaluated, finding none of these in high-exposure 
zones; all were mounted on interior walls > 2 m 
from doors, vents, or moisture sources (Figure 4).   

These observations confirm that the proposed 
physics-informed method correctly identifies real 
calibration degradation accelerated by adverse 
placement, rather than false positives from 
normal spatial variation.  

Table 3 – Physical Survey of Critically Drifting 
Sensors (Field Inspection, December 2025) 

Fig4a. Device: 018317c3  

Fig4b. Device: 70886b12335b 

De
vic
e 

ID

M
ea
s.

An
nua

l 
Drif

t

Location Observed Bias 
Source

01
83
17
c3 

H
u
m

+23
.3 
%/
yr 

In tight 
corridor 
outside muggy 
open space.  

Contrasting 
airflow + supply 
air 

01
83
17
c3 

Te
m
p

+2.
7 
°C/
yr 

Same as above. Hot air 
stratification 

70
88
6b
12
33
5b 

V
O
C

+14
2.8 
ppb/
yr

Corridor, near 
multiple lab 
and classroom 
spaces with 
varying 
environments.  

Inconsistent 
airflows 

01
8a
1d
f9

H
u
m

+22
.4 
%/
yr

Personal office 
with coffee 
maker & 
dehumidifier

Repeated steam 
bursts & humidity 
contrast
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Fig4c. Device: 018a1df9 

6.0 Discussion 

This study demonstrates that a physics-informed, 
data-driven framework can effectively identify 
sensor drift in operational smart building 
environments without requiring reference 
hardware or manual calibration checks. By 
integrating statistical trend analysis, physical 
plausibility constraints, and cross-sensor 
consistency validation, the method was able to 
detect meaningful long-term degradation across 
76 sensor streams collected over 395 days.

Approximately one-third of all sensors exhibited 
statistically significant drift, with 13 sensors 
surpassing manufacturer-defined calibration 
thresholds and requiring immediate corrective 
action. The high prevalence of humidity drift, 
reaching up to 56% per year, highlights the 
susceptibility xof low-cost environmental sensors 
to moisture-related degradation, particularly 
when mounted in micro-environments that 
amplify airflow, heat, or humidity gradients.

Field inspection confirmed that all critically 
drifting sensors were positioned in locations 

known to induce measurement bias, including 
doorways, vents, projector heat plumes, and 
stairwell moisture zones. In contrast, stable 
sensors were consistently located on interior 
walls away from such exposure. This spatial 
ground-truthing reinforces that the framework is 
detecting genuine physical distortion rather than 
normal spatial heterogeneity.

Beyond diagnostic accuracy, the economic 
analysis demonstrates that predictive calibration 
informed by this framework reduces annual 
maintenance cost by 75.2%, avoiding both 
emergency labor and energy waste associated 
with delayed detection. These results validate the 
operational value of embedding physics-informed 
drift detection directly into building management 
systems, enabling early intervention, extended 
sensor lifespan, and improved environmental 
control.

Overall, this study provides strong evidence that 
reliable, scalable, and automated drift detection 
can be achieved using only existing sensor data, 
offering a path toward more resilient and cost-
effective smart building infrastructure.

7.0 Future work and Conclusion 

Future work should address these limitations 
through nonlinear drift modeling and exploration 
of single-sensor detection methods using building 
energy models as reference baselines. Integration 
with building management systems for real-time 
monitoring would transform this from a 
diagnostic tool to an operational asset.  

In conclusion, our physics-informed framework 
provides a robust, scalable solution for 
maintaining sensor network integrity. By catching 
calibration issues early, building operators can 
transition from reactive to predictive 
maintenance, ensuring optimal system 
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performance while realizing substantial economic 
benefits.  

Field verification of sensor placement provides 
rare ground-truth that detected drifts represent 
genuine degradation accelerated by adverse 
location, not normal spatial gradients. By 
combining automated statistical detection with 
simple physical inspection, building operators 
can achieve highly reliable, low-cost sensor 
network maintenance with confidence in both the 
flags raised and the stable sensors trusted. 

Additional work should be invested in 
uncovering the full reasons for sensor 
decalibration in Olsson and Thornton; it is our 
opinion that the correlation found between sensor 
instability and sensor positioning in relation to 
select features that may introduce variable 
heating/humidity may provide grounds for further 
study. The next steps toward achieving a stable 
and self-correcting building management system 
should include taking a full census of the Link 
Lab sensors alongside a comprehensive 
categorization of their situations relative to any 
apparatus that may introduce rapid changes in 
room condition. With this framework, sensor 
testing could be conducted alongside a variety of 
environmentally controlled alterations to assess 
what circumstances result in sensor drift and 
which don’t, fostering the potential for more 
effective BMS’ in the future.  
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