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ABSTRACT 
Modern building sensors can provide valuable information 
regarding occupants’ health, comfort, and safety. However, the 
scale and complexity of collected time-series data often make the 
data's real-world implications inaccessible to non-technical users. 
This paper presents a visual interface designed to translate 
real-time sensor measurements for six key building metrics –  
temperature, carbon dioxide, volatile organic compounds, 
humidity, noise, and illumination – into a digitally displayed, 
intuitive color-coded diagram. The system combines simple 
time-series analytics with a large language model (LLM), which 
interprets sensor readings, trends, and predefined health-related 
thresholds to select representative hexadecimal colors. A Streamlit 
web application displays the model’s outputs in a dynamic packed 
bubble chart, which adapts to emphasize the most critical metric 
levels at any given time. Tests for consistency demonstrate that 
the LLM’s color assignments remain stable for identical metric 
inputs and vary appropriately across distinct environmental 
conditions. The resulting interface streamlines interpretation of 
indoor conditions, rendering building data more accessible to 
technical and non-technical audiences alike. This work showcases 
the capacity of AI-assisted visualization to generalize IoT data, 
while highlighting future opportunities to improve accessibility, 
interpretability, and reliability through user studies and refined 
prompt engineering. 
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Visualization systems and tools; human computer interaction 
(HCI); decision support systems; sensor networks; machine 
learning; natural language processing 
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1.​ INTRODUCTION 
Indoor building conditions are important to occupants' health. 
There are many different metrics to examine, but a few can be 
monitored in real time with sensing techniques. Sensing 
techniques include temperature, carbon dioxide, volatile organic 
compounds (VOCs), humidity, noise, and illumination. Within 
these metrics, some values are optimal to keep occupants healthy 
and comfortable. The optimal range for temperature is 20-25 
degrees Celsius, for carbon dioxide it is below 1000 parts per 
million (ppm), for VOCs it is below 100 parts per billion (ppb), 
for humidity it is between 30-50%, for noise it is below 55 
decibels (dB), and for illumination it is between 100-500 lux [3, 4, 
5, 6, 10]. Conditions for these metrics are summarized in Table 1. 
By acquiring real-time data from sensor devices for these metrics, 
the health conditions of indoor spaces can be monitored. 
 

Table 1. Metric Values in Relation to Indoor Health 

Metric   Values   
Temperature 

(°C)  Low: 
 < 20 Good:  20-25 High: 

> 25  

CO2 (ppm) Good: 
< 700 

Acceptable: 
700-999 

Warning: 
1000-5000 

Dangerous: 
> 5000  

VOCs (ppb)  Good: 
< 30  

Acceptable: 
30-100 

High: 
> 100  

Humidity (%)  Low: 
< 30 

Acceptable: 
30-50 

High: 
> 50  

Noise (dB) Quiet: 
< 30 

Ambient: 
30-44 

Audible: 
45-55 

Loud: 
56-70 

Dangerous: 
> 70 

Illumination 
(lux) 

Dark: 
< 100 

Lit: 
100-299 

Well Lit: 
300-500 

Bright: 
> 500  

 
The enormous amount of data generated by sensors in Internet of 
Things (IoT) applications is a growing challenge. Traditional 
linguistic summarization methods have been explored to 
aggregate sensor patterns. A linguistic summary typically includes 
a quantity in agreement (Q), a summarizer (S), and a truth 
measure (T), providing user-friendly descriptions, such as “most 
temperatures are high (0.8)” [24]. Previously, data summarization 



 
relied on statistical approaches that often struggled to capture 
contextual relationships or connotative meanings in complex 
datasets [23]. 
 
Artificial intelligence (AI) driven summarization tools are 
emerging as vital technologies for converting unstructured or 
complex data into clear representations while preserving the 
original context [2]. An AI summarizer uses large language 
models (LLMs) to analyze and condense information into 
meaningful, concise summaries. These AI-powered systems 
leverage natural language processing (NLP) and deep learning to 
generate contextually relevant summaries [23]. Unsupervised and 
semi-supervised learning methods are crucial when ground-truth 
labels are unavailable, enabling models to adapt over time through 
reinforcement learning strategies. AI-enabled IoT systems (AIoT) 
can continually refine their knowledge bases through iterative 
learning, thereby enhancing resilience and understanding as new 
data is collected [13, 14]. Recent surveys reveal that 
transformer-based LLMs have expanded the scope of automated 
summarization. Today’s AI summarizers can integrate textual, 
numerical, and multimodal data to produce summaries across a 
range of fields beyond scientific research [9]. 
 
A common strategy for presenting summaries and communicating 
data findings in an approachable format is to create a visual [7]. 
Visualizations enable viewers to make quicker judgments and 
draw more memorable conclusions from data than do text-based 
presentations [7]. It has been widely shown that people can 
process visuals faster than text, with speeds ranging from 6 to 
6,000 times faster [18]. An effective visual is designed to require 
minimal working memory from the viewer, guide attention, and 
adhere to commonly established conventions within the format 
and subject [7]. For example, an image of a sun commonly 
conveys brightness, and it would be against established 
conventions to use that graphic to represent sound level. General 
best practices for visualizations include limiting animations to 
prevent overcomplication, reducing clutter, and highlighting 
significant points [7].  
 
The use of color in visuals can affect its interpretation, and it is a 
factor that can be understood regardless of reading and language 
abilities [11]. Color can be used to both make a visual easier to 
understand and provide information. Using different contrast 
levels can draw the user’s attention to certain parts of the visual 
that are more important to the overall message [11]. Brighter, 
warmer colors are more attention-grabbing and can guide the 
viewer’s gaze [11]. Colors can also help convey information, as 
people associate them with different emotions, and they can 
influence viewers to take a positive or negative takeaway from the 
visual [17]. The basic six emotions of anger, disgust, fear, 
happiness, sadness, and surprise were found in previous work to 
be associated with the colors red, green, black, yellow, blue, and 
brightness, respectively [17]. This innate color association allows 
a visual to be created with the intention of influencing how the 
viewer feels about the subject matter. 
 

When evaluating how users interact with data summaries and 
visuals, it is essential to account for differences in technological 
literacy across groups. Due to differences in age and physical 
development, both younger and older populations may perceive 
technology-related information differently from the general 
public. On the one hand, children around the age of six often 
begin engaging with the internet, even before they have fully 
developed their reading and writing skills. Research suggests that 
boys tend to access technology-related information more 
effectively when it is embedded in video game formats or 
interactive systems. In contrast, girls often find it more engaging 
and accessible when presented through storytelling approaches 
[12]. On the other hand, older adults, who may have less 
familiarity with digital technologies and experience age-related 
declines in sensory processing (such as vision and hearing), can 
benefit from supportive tools. Incorporating “virtual assistants” 
such as Amazon Echo or Alexa can provide a more intuitive and 
accessible way for them to interact with technology [8]. 
 
Recent advances in generative AI have led to models capable of 
producing images that surpass human-created visuals in realism, 
clarity, and emotional appeal. Previous studies have demonstrated 
that AI-generated marketing content was often perceived as more 
communicative than professionally designed imagery and as more 
real than its authentic counterpart [8]. The burgeoning visual 
capabilities of generative AI, combined with its ease of use via 
text prompts, suggest that AI may be ideal for translating data 
streams from building sensors into intuitive and expressive visual 
figures. 
 
This project proposes a system that summarizes building data into 
an easy-to-understand visual. It will show occupants the current 
building conditions through a grid-like structure of labeled color 
bubbles, where the color and size depend on the data type and 
value. It will utilize AI to generate the appropriate color to 
represent the data. The layout will allow all occupants without 
significant visual impairment to quickly understand building 
conditions. Due to time and resource constraints, this study will 
focus solely on the development and design of the visual 
interface, rather than on its implementation in a physical space. 
This study will provide proof of concept for a visual interface to 
display indoor conditions. While user studies are not within the 
scope of this project, the research will provide a framework for 
future studies. 
 

2.​ PROBLEM STATEMENT 
Buildings equipped with sensor technology can provide their 
occupants with real-time data on indoor environmental conditions. 
However, due to the scale of the data and the technical knowledge 
required to understand the database, it can be difficult to quickly 
analyze and use this data to derive actionable insights into 
buildings. When occupants can easily understand the building’s 
current condition, they can take action to improve health, comfort, 
or even energy efficiency. 



 

3.​ MOTIVATION 
Building management systems (BMS) receive a continuous 
stream of data from sensors, including measurements of air 
quality, temperature, occupancy, and energy use. This type of data 
is typically presented in graphical form, enabling the analyst to 
identify trends and anomalies easily. While a graphical 
representation may be suitable for an experienced user, the 
complex data would be challenging for an inexperienced viewer, 
such as a child, to understand. The project aims to develop a 
method for presenting data that enables a wide range of users to 
quickly and intuitively understand the conditions of the 
surrounding environment. 

4.​ METHODOLOGY 

 
Figure 1. Process Flow Diagram 

 
As illustrated in Figure 1, creating a visual interface for indoor 
conditions can be broken down into four components: data 
acquisition, analysis, LLM prompting, and visualization. The state 
of the data can be modularly broken down into its constituent 
parts, as discussed below and illustrated in Figure 1. 

4.1 Data Acquisition 
The data for this project is hosted in the Link Lab Cloud (LLC), a 
timeseries database built on InfluxDB [20]. The data is collected 
from various sensors located within the University of Virginia’s 
Rice Hall and Olsson Hall. This project examines six metrics of 
indoor health: temperature (ºC), carbon dioxide (ppm), VOCs 
(ppb), humidity (%), average sound pressure level (dB), and 
illumination (lux).  
 
A Python function called pull_data leverages Influx Query 
Language (InfluxQL) and the pandas library to acquire and format 
data from the LLC. The function’s default parameter values are a 

list of the six aforementioned metrics, the start and end times for a 
one-hour window before the function call, and data grouping by 
both one-minute intervals and sensor ID. For this project, only the 
default arguments were used. However, the function can 
alternatively be called with user-specified parameters to 
accomplish the following: 

●​ Select any set of metrics 
●​ Provide specific start and end date-times 
●​ Change the grouping criteria based on available 

metadata [20] 
●​ Filter by specific location (e.g., 211 Olsson) 

The function's final output is a dictionary of pandas dataframes, 
with metric types as keys and their respective dataframes as 
values.  

4.2 Data Analysis 
The dataframes from the data acquisition process were parsed to 
exclude invalid (NaN) values. The average of all sensor readings 
over the one-hour time window and the slope of the line of best fit 
of those averages were calculated for each metric. A positive, 
negative, or zero slope indicated an increasing, decreasing, or 
stable trend, respectively, and was translated into a status label of 
1, -1, or 0. This information was aggregated into JavaScript 
Object Notation (JSON), with metric types as keys, and the 
one-hour average and status label as values.  

4.3 LLM Prompting 
The project utilized OpenAI’s GPT-4.1 nano LLM through an 
application programming interface (API). Following the data 
analysis, the JSON output and the ranges corresponding to low, 
moderate, or high levels, as shown in Table 1, were passed to the 
API. The LLM was then prompted to formulate a qualitative 
indicator of the room’s condition in the form of a representative 
hexadecimal color code (e.g., #76A074) for each metric over the 
one-hour time window. 
 
As the system evolved, the exact language used in the LLM 
prompts shifted in response to the color code outputs from 
GPT-4.1 nano. In their research paper on an AI prompting 
protocol for human-AI knowledge co-construction, Robertson et 
al. provided a framework for iterative prompt engineering and a 
validation process to mitigate bias in AI outputs [15]. To initially 
avoid confirmation and feedback loop biases, the first version of 
the prompts was formulated to give the LLM freedom to choose a 
representative hexadecimal color code without any explicit 
guidance. These preliminary outputs were used to evaluate the 
LLM’s communicativeness in its color choices. The prompts were 
then refined to provide the LLM with more direction for assigning 
colors to low, moderate, and high values for each metric. The final 
iteration of the prompts provided to the LLM is exemplified 
below. 
 
Temperature: “Provide a single hexadecimal color code (e.g., 
#FF5733) representing a room temperature of {temperature}°C. 
The temperature is considered {temperature status} and described 
as {temperature condition}. Warmer temperatures (above 25 °C) 



 
should correspond to warmer colors (red/orange), and cooler 
temperatures (below 20 °C) to cooler colors (blue). Return only 
the hex code.” 

4.4 Visual Interface 
The front-end visual interface was designed using Streamlit, an 
open-source framework that emphasizes building fast web 
applications for data [16]. The data is passed to the visual 
interface as a dictionary, with metric types as keys and lists 
containing the hexadecimal color code from LLM prompting and 
the JSON output from data analysis as values.  
 
Three iterations of the visual interface were considered in pursuit 
of an intuitive user experience, informed by user feedback. Each 
iteration provided varying levels of control over the size of the 
metric-indication objects, starting with constant sizes and 
progressing to LLM-generated weighted sizes.  
 
For all iterations, the view was adapted based on the output from 
data analysis. The background color for each metric-indication 
object was set to the hexadecimal color code specified in the LLM 
prompting. The visual symbol above the metric label was 
dynamically updated based on the one-hour average and its 
relationship to the values in Table 1. Below each metric label, a 
symbol indicates the current trend of the data discussed in section 
4.2. An up arrow, down arrow, or neutral line represents an 
increasing, decreasing, or stable trend, respectively. Each interface 
was designed to direct the user’s attention to the relevant 
information while being accessible and easy to understand. An 
algorithm was used to update the metric label text color, ensuring 
significant contrast between the background and text colors [21]. 
The algorithm calculates the background color's luminance 
(brightness) on a scale from 0 (black) to 1 (white). If the 
background’s luminance is less than 0.5, a lighter text color is 
used; otherwise, a darker color is used. This algorithm provides an 
appropriate compatible color [1] regardless of the LLM-generated 
hexadecimal color code.  
 
The first iteration employs constant-sized boxes for each metric. It 
used custom Hypertext Markup Language (HTML) and Streamlit 
components to build the visual framework, as shown in Table 5 
under Version 1: Constant Size.  
 
The second iteration used a Plotly packed-bubble chart [19] and is 
shown in Table 5 under Iteration 2: Human-Decided Size. This 
structure allowed the size of the metric-indication objects to be 
dynamically updated based on the values in Table 1. The location 
of the metric-indication object was adjusted based on each 
metric's data, such that the two metrics with values furthest from 
their acceptable ranges were placed in the center of the screen.  
 
Use of the Plotly packed-bubble chart continued in the third and 
final iteration, as shown in Table 5 under Iteration 3: 
LLM-Generated Size. Rather than providing user-specified 
acceptable metric ranges, the size of the metric-indication objects 
was determined through additional LLM prompting. For each 

metric, GPT-4.1 nano was prompted to provide a weight value to 
determine the size of the metric-indication object. The prompt for 
temperature can be seen below: 
 
“Provide a value from 0-1 that represents how a room with a 
temperature of {temperature}°C would impact a person's health. 
The value should be closer to 1 if it is dangerous and closer to 0 if 
it is comfortable/safe. The temperature is considered {temperature 
status} and described as {temperature condition}.” 

4.5 Test Design 
Multiple runs were conducted on the same dataset to test the 
system's consistency. To test the system’s robustness to data 
variations, runs over several time windows with varying 
conditions were conducted. 
 
The dataset used to test the system’s consistency when given the 
same input was collected from the time window of 1 PM to 2 PM 
on October 28, 2025, when the outdoor average was 12 °C. As the 
dataset was consistent across all ten runs and iterations, any 
variations in the metric-indication background color were due to 
the LLM-generated hexadecimal color code. The average values 
calculated during data analysis are represented in Table 2. 
 

Table 2. Indoor Conditions for Consistency Test 
Temperature 

(°C) 
CO2 

(ppm) 
VOCs 
(ppb) 

Humidity 
(%) 

Noise 
(dB) 

Illumination 
(lux) 

21 462 123 37 57 1423 
 
Six time windows with varying conditions were identified to test 
the system’s robustness to data variations, as seen in Table 3. 
These timeframes were selected to center around the consistency 
test timeframe from Table 2 as a baseline. Under the presumption 
that variations in outdoor conditions could impact indoor 
conditions, the justification for each time window’s selection, with 
the outdoor temperature, can be seen in the bulleted list as 
follows: 

1.​ High temperatures on a weekday (31 °C) 
2.​ Below freezing temperatures on a weekday (-5 °C) 
3.​ Morning time window from October 28, 2025 (8 °C) 
4.​ Late-night time window from October 28, 2025 (10 °C) 
5.​ Rainy day (6 °C) 
6.​ Weekend (14 °C) 

The outdoor conditions for the consistency and variation test runs 
were based on the average values for Charlottesville, Virginia, for 
the specified one-hour time window [22].  
 
The three iterations of the visual interface were directly compared 
across four time windows, where time window 0 corresponds to 
the consistency test in Table 2, and time windows 1, 2, and 3 
correspond to the first three rows of Table 3. The most effective 
iteration was selected as the final view.  
 
 
 
 



 
Table 3. Indoor Conditions for Varied Time Windows 

Time 
Window 

Temperature 
(°C) 

CO2 
(ppm) 

VOCs 
(ppb) 

Humidity 
(%) 

Noise 
(dB) 

Illumination 
(lux) 

1 21 458 87 62 53 280 

2 20 423 131 15 53 319 

3 21 481 165 38 54 30 

4 21 622 320 37 57 1435 

5 20 425 64 30 52 193 

6 21 462 123 37 56 1423 
 

Table 4. Indoor Conditions for Iteration Comparison 
Time 

Window 
Temperature 

(°C) 
CO2 

(ppm) 
VOCs 
(ppb) 

Humidity 
(%) 

Noise 
(dB) 

Illumination 
(lux) 

0 21 462 123 37 57 1423 

1 21 458 87 62 53 280 

2 20 423 131 15 53 319 

3 21 481 165 38 54 30 
 

5.​ RESULTS 
The resulting metric-indication background colors for the 
consistency test are shown in Table 5 below. Each color block 
matches the LLM-selected color for that metric at each iteration. 

 
 
For the robustness test, the metric-indication background colors 
are compared in Table 6 below. The first and second runs for each 
time window are denoted xA and xB, respectively. 

 
 
The comparison between the three versions of the visual interface 
is shown in Table 7. 
 

6. ​ DISCUSSION 
As shown in Table 5, the consistency test results indicate that 
GPT-4.1 nano was generally capable of generating hexadecimal 
color codes of similar hue across repeated trials with constant 
inputs. However, when shades and tints are taken into account, 
visually distinguishable variability exists across all metrics except 
VOCs. Furthermore, in the results of the robustness test, there 
were clear discrepancies in the colors assigned during the repeated 
trials for some time windows (Table 6). For example, humidity 
values were held constant between both trials of time window 3, 
yet the resulting colors for trials A and B were green and orange, 
respectively. A similar discrepancy was observed in time window 
4. Though not as noticeable, the color assignments for noise and 
illumination for time window 6 also raised concerns regarding the 
system’s consistency. 
 
Robustness testing across varied time windows demonstrated that 
under differing external conditions, such as date and time, the 
LLM generates significantly different hexadecimal color codes. 
Time window 3 included data from the early morning of October 
28, 2025. One might infer that classrooms would be unoccupied at 
this time, meaning lights would be off and lux values would be 
lower.  
 
 



 
Table 7. Comparison of Interface Iterations 

 
Upon close examination of Table 3, the noise levels for all six 
time windows ranged from 52 dB to 57 dB. As given in Table 1, 
noise levels between 45 and 55 dB are considered audible, while 
noise levels between 56 and 70 dB are considered loud. Looking 
again at the results from the robustness test, shown in Table 6, it 
should be noted that the color selections representing the noise 
level varied from green to blue to orange and red, despite the 
small differences in the input noise levels. This observed volatility 
in color selection could be explained by the proximity of input 
noise levels to the tipping point between the audible and loud 
categories. 
 
Following the results from Tables 5 and 6, it is not entirely clear 
what the average metric value is for the color observed without 
having the accompanying dataset associated with the time 
window. While the relationship between color and temperature 
may be easier to intuit, it is more difficult to draw a clear, 
universally understood relationship between color and 
unobservable indoor metrics, such as CO2.  A similar struggle 
was encountered with illumination: the original color scale 
requested in the prompt to the LLM ranged from black to white, 
but it was difficult for users to distinguish between shades of gray 
or intuit the color’s real-world meaning with respect to indoor 
health and comfort. To make matters worse, a gray box displayed 
on a screen might appear differently depending on its 

surroundings. Including shades of yellow allows the user to more 
easily assess the room's current lighting levels. Colors alone, as 
shown in the first column of Table 7, Iteration 1: Constant Size, 
were not sufficient indicators of indoor health or the condition of 
the indoor space. The constant layout and size of the 
metric-indication objects failed to emphasize metrics at 
suboptimal or dangerous levels and did not convey any intuitive 
message to the user. Therefore, another element had to be 
introduced to the system to compensate for the lack of universality 
in color assignments by the LLM – varying bubble sizes within a 
packed-bubble chart.  
 
The second iteration’s dynamic augmentation of size and location 
for each metric-indication object effectively provided additional 
context to complement the background colors of those objects. 
The last iteration utilized LLM-generated weighted values to 
augment the size of the metric-indication objects. Interestingly, 
adding the LLM-generated weighted values did not significantly 
affect the layout of the metric-indication objects. This iteration 
was also the most resource-intensive, as additional prompting to 
OpenAI’s GPT-4.1 nano required more API tokens and additional 
computing power for generating further information. It was 
determined that the benefit of utilizing LLM-generated weighted 
values did not outweigh the cost of the resource intensity. 



 
Therefore, the final version of the visual interface shown in Figure 
2 is the second iteration. 
 

 
Figure 2. User View of Interface 

 
There are some limitations to the system. The algorithm for 
creating the packed bubble chart often results in some of the 
visuals overlapping. The background color determination, as 
discussed previously in this section, is not entirely accurate and 
demonstrates variation when values are on the cusp of acceptable 
or unacceptable values. The data analysis portion, which assigns 
status labels, does not account for the human body’s inability to 
perceive minuscule changes in the observed metrics over the 
one-hour time window. Future work could explore providing 
thresholds for assigning status labels based on human perception, 
rather than strict cases of greater than, less than, or equal to zero. 
Also, many sensors were unable to provide readings at the 
requested 1-minute interval. Therefore, non-numeric values (NaN) 
were dropped from the average calculation and subsequently the 
slope of the line of best fit. This lack of data over significant 
periods could lead to an inaccurate representation of the metric 
conditions over the one-hour time window.  
 
Future development of this system could enhance its accessibility, 
interpretability, and consistency. In its current state, the system 
lacks features to support users with vision impairments or color 
vision deficiencies. Adding a color-blind setting to the system 
would begin to address these concerns, though it would require 
further testing of the AI’s color selections.  
 
An important next step in this research would be to conduct 
structured user evaluations, which may showcase the system’s 
effectiveness or reveal additional shortcomings. Receiving 
feedback on the system from real participants with varying 
technical literacy, visual abilities, and age would provide the data  
to support this system’s claim of simplistic interpretability. Such a 
study could also offer insight into the impacts of our system’s lack 
of consistency; at present, the color determination does not always 
follow a predictable pattern, especially when a sensor metric’s 
value shifts from an acceptable level to a dangerous one, or vice 
versa. Drastic changes in color might confuse the user, further 
reducing the system’s interpretability. Additionally, a user study 
could be used to determine if the interface should be simplified to 

only show pressing metrics, or if the current display of all 
information is more helpful to occupants.  
 
Another aspect to address in a user study would be determining 
the most effective way to present the visual interface. Different 
strategies could include a website accessed on personal devices or 
a publicly displayed screen in the indoor space it represents.  

6.​ CONCLUSION 
To improve indoor health and awareness, it is important that 
occupants can easily understand current conditions. This work 
illustrates the feasibility of using visuals in conjunction with 
LLMs to translate raw indoor environmental data on temperature, 
carbon dioxide, volatile organic compounds, humidity, noise, and 
illumination into interpretable, color-based representations. By 
leveraging AI to interpret time-series measurements, the system 
exemplifies a streamlined method for conveying indoor conditions 
to non-expert observers. The results of this study suggest that 
LLMs can serve as effective and reliable intermediaries between 
quantitative measurements and human-centered decision support, 
though their behavior remains sensitive to prompt design. 

7.​ ACKNOWLEDGMENTS 
This project was done as a part of CS 4501: Smart and Healthy 
Buildings taught at the University of Virginia during the fall 2025 
semester. The professors, Arsalan Heydarian and Brad Campbell, 
provided guidance and feedback. 
 

8.​ REFERENCES 
[1]​ 101 Computing. 2020. Colour Luminance and Contrast 

Ratio. Retrieved October 23, 2025 from 
https://www.101computing.net/colour-luminance-and-contr
ast-ratio/ 

[2]​ Ajinkya Potdar. 2024. Intelligent Data Summarization 
Techniques for Efficient Big Data Exploration Using AI. 
IJAIBDCMS 5, 1 (March 2024). 
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P109 

[3]​ Berkeley Lab. 2025. Introduction to VOCs. Indoor Air 
Quality Scientific Findings Resource Bank. Retrieved from 
https://iaqscience.lbl.gov/introduction-vocs 

[4]​ PR Boyce, HM Brandston, and C Cuttle. 2022. Indoor 
lighting standards and their role in lighting practice. 
Lighting Research & Technology 54, 7 (November 2022), 
730–744. https://doi.org/10.1177/14771535221126413 

[5]​ Sani Dimitroulopoulou, Marzenna R. Dudzińska, Lars 
Gunnarsen, Linda Hägerhed, Henna Maula, Raja Singh, 
Oluyemi Toyinbo, and Ulla Haverinen-Shaughnessy. 2023. 
Indoor air quality guidelines from across the world: An 
appraisal considering energy saving, health, productivity, 
and comfort. Environment International 178, (August 
2023), 108127. 
https://doi.org/10.1016/j.envint.2023.108127 

https://www.101computing.net/colour-luminance-and-contrast-ratio/
https://www.101computing.net/colour-luminance-and-contrast-ratio/
https://www.101computing.net/colour-luminance-and-contrast-ratio/
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P109
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P109
https://iaqscience.lbl.gov/introduction-vocs
https://iaqscience.lbl.gov/introduction-vocs
https://doi.org/10.1177/14771535221126413
https://doi.org/10.1016/j.envint.2023.108127
https://doi.org/10.1016/j.envint.2023.108127


 
[6]​ Daniel J. Fink. 2017. What Is a Safe Noise Level for the 

Public? Am J Public Health 107, 1 (January 2017), 44–45. 
https://doi.org/10.2105/AJPH.2016.303527 

[7]​ Steven L. Franconeri, Lace M. Padilla, Priti Shah, Jeffrey 
M. Zacks, and Jessica Hullman. 2021. The Science of 
Visual Data Communication: What Works. Psychol Sci 
Public Interest 22, 3 (December 2021), 110–161. 
https://doi.org/10.1177/15291006211051956 

[8]​ Jochen Hartmann, Yannick Exner, and Samuel Domdey. 
2025. The power of generative marketing: Can generative 
AI create superhuman visual marketing content? 
International Journal of Research in Marketing 42, 1 
(March 2025), 13–31. 
https://doi.org/10.1016/j.ijresmar.2024.09.002 

[9]​ Boulanouar Khedidja, Hadjali Allel, and Lagha Mohand. 
2020. Data Summarization for Sensor Data Management: 
Towards Computational-Intelligence-Based Approaches. 
IJCDS 9, 5 (September 2020), 825–833. 
https://doi.org/10.12785/ijcds/090505 

[10]​Dolaana Khovalyg, Ongun B. Kazanci, Hanne Halvorsen, 
Ida Gundlach, William P. Bahnfleth, Jørn Toftum, and 
Bjarne W. Olesen. 2020. Critical review of standards for 
indoor thermal environment and air quality. Energy and 
Buildings 213, (April 2020), 109819. 
https://doi.org/10.1016/j.enbuild.2020.109819 

[11]​Hanlu Lyu. 2025. A Study of the Role of Color in Visual 
Communication in the Digital Perspective. Mediterranean 
Archaeology & Archaeometry 25, 1 (January 2025), 
352–357. 

[12]​Hannah Ramsden Marston and Julie Samuels. 2019. A 
Review of Age Friendly Virtual Assistive Technologies and 
their Effect on Daily Living for Carers and Dependent 
Adults. Healthcare 7, 1 (March 2019), 49. 
https://doi.org/10.3390/healthcare7010049 

[13]​Susan McKenney and Joke Voogt. 2010. Technology and 
young children: How 4–7 year olds perceive their own use 
of computers. Computers in Human Behavior 26, 4 (July 
2010), 656–664. https://doi.org/10.1016/j.chb.2010.01.002 

[14]​Subhas Chandra Mukhopadhyay, Sumarga Kumar Sah 
Tyagi, Nagender Kumar Suryadevara, Vincenzo Piuri, Fabio 
Scotti, and Sherali Zeadally. 2021. Artificial 
Intelligence-Based Sensors for Next Generation IoT 
Applications: A Review. IEEE Sensors J. 21, 22 (November 
2021), 24920–24932. 
https://doi.org/10.1109/JSEN.2021.3055618 

[15]​Jeandri Robertson, Caitlin Ferreira, Elsamari Botha, and 
Kim Oosthuizen. 2024. Game changers: A generative AI 

prompt protocol to enhance human-AI knowledge 
co-construction. Business Horizons 67, 5 (September 2024), 
499–510. https://doi.org/10.1016/j.bushor.2024.04.008 

[16]​Streamlit. 2025. Streamlit Docs. Retrieved November 25, 
2025 from https://docs.streamlit.io/ 

[17]​Tina M. Sutton and Jeanette Altarriba. 2016. Color 
associations to emotion and emotion-laden words: A 
collection of norms for stimulus construction and selection. 
Behav Res 48, 2 (June 2016), 686–728. 
https://doi.org/10.3758/s13428-015-0598-8 

[18]​Michaela Tuscher and Johanna Schmidt. 2022. Processing 
Speed and Comprehensibility of Visualizations and Texts. 
2022. . Retrieved October 12, 2025 from 
https://www.semanticscholar.org/paper/Processing-Speed-an
d-Comprehensibility-of-and-Texts-Tuscher-Schmidt/d607f3
2a5e95f810df381a7dedc94b00e6b59c43 

[19]​U-Danny. 2025. Packed-bubble chart - Plotly Python. Plotly 
Community Forum. Retrieved October 30, 2025 from 
https://community.plotly.com/t/packed-bubble-chart/92789 

[20]​University of Virginia. 
infrastructure.linklab.virginia.edu/linklabcloud/index.html. 
Link Lab Cloud. Retrieved October 28, 2025 from 
https://infrastructure.linklab.virginia.edu/linklabcloud/index
.html 

[21]​Web Accessibility Initiative. 2025. Understanding WCAG 
2.1. WCAG 2.1 Understanding Docs. Retrieved October 23, 
2025 from 
https://www.w3.org/WAI/WCAG21/Understanding/ 

[22]​World Weather. 2025. Weather in Charlottesville in October 
2025 (Virginia) - detailed Weather Forecast for a month. 
World-Weather.info. Retrieved November 6, 2025 from 
https://world-weather.info/forecast/usa/charlottesville/octob
er-2025/ 

[23]​Haopeng Zhang, Philip S. Yu, and Jiawei Zhang. 2025. A 
Systematic Survey of Text Summarization: From Statistical 
Methods to Large Language Models. ACM Comput. Surv. 
(April 2025), 3731445. https://doi.org/10.1145/3731445 

[24]​Jing Zhang and Dacheng Tao. 2021. Empowering Things 
With Intelligence: A Survey of the Progress, Challenges, 
and Opportunities in Artificial Intelligence of Things. IEEE 
Internet Things J. 8, 10 (May 2021), 7789–7817. 
https://doi.org/10.1109/JIOT.2020.3039359 

https://doi.org/10.2105/AJPH.2016.303527
https://doi.org/10.2105/AJPH.2016.303527
https://doi.org/10.1177/15291006211051956
https://doi.org/10.1177/15291006211051956
https://doi.org/10.1016/j.ijresmar.2024.09.002
https://doi.org/10.1016/j.ijresmar.2024.09.002
https://doi.org/10.12785/ijcds/090505
https://doi.org/10.12785/ijcds/090505
https://doi.org/10.1016/j.enbuild.2020.109819
https://doi.org/10.1016/j.enbuild.2020.109819
https://doi.org/10.3390/healthcare7010049
https://doi.org/10.3390/healthcare7010049
https://doi.org/10.1016/j.chb.2010.01.002
https://doi.org/10.1109/JSEN.2021.3055618
https://doi.org/10.1109/JSEN.2021.3055618
https://doi.org/10.1016/j.bushor.2024.04.008
https://docs.streamlit.io/
https://doi.org/10.3758/s13428-015-0598-8
https://doi.org/10.3758/s13428-015-0598-8
https://www.semanticscholar.org/paper/Processing-Speed-and-Comprehensibility-of-and-Texts-Tuscher-Schmidt/d607f32a5e95f810df381a7dedc94b00e6b59c43
https://www.semanticscholar.org/paper/Processing-Speed-and-Comprehensibility-of-and-Texts-Tuscher-Schmidt/d607f32a5e95f810df381a7dedc94b00e6b59c43
https://www.semanticscholar.org/paper/Processing-Speed-and-Comprehensibility-of-and-Texts-Tuscher-Schmidt/d607f32a5e95f810df381a7dedc94b00e6b59c43
https://www.semanticscholar.org/paper/Processing-Speed-and-Comprehensibility-of-and-Texts-Tuscher-Schmidt/d607f32a5e95f810df381a7dedc94b00e6b59c43
https://community.plotly.com/t/packed-bubble-chart/92789
https://community.plotly.com/t/packed-bubble-chart/92789
https://infrastructure.linklab.virginia.edu/linklabcloud/index.html
https://infrastructure.linklab.virginia.edu/linklabcloud/index.html
https://infrastructure.linklab.virginia.edu/linklabcloud/index.html
https://www.w3.org/WAI/WCAG21/Understanding/
https://www.w3.org/WAI/WCAG21/Understanding/
https://world-weather.info/forecast/usa/charlottesville/october-2025/
https://world-weather.info/forecast/usa/charlottesville/october-2025/
https://world-weather.info/forecast/usa/charlottesville/october-2025/
https://doi.org/10.1145/3731445
https://doi.org/10.1109/JIOT.2020.3039359
https://doi.org/10.1109/JIOT.2020.3039359

	ABSTRACT 
	1.​INTRODUCTION 
	2.​PROBLEM STATEMENT 
	3.​MOTIVATION 
	4.​METHODOLOGY 
	4.1 Data Acquisition 
	4.2 Data Analysis 
	4.3 LLM Prompting 
	4.4 Visual Interface 
	 

	4.5 Test Design 

	5.​RESULTS 
	6. ​DISCUSSION 
	6.​CONCLUSION 
	7.​ACKNOWLEDGMENTS 
	8.​REFERENCES 

